[ACIE] H2-TPR用来探究固态氧化还原化学是放之四海而皆准的吗?

文摘   2024-10-10 08:10   日本  

Abstract

Redox reactions on the surface of transition metal oxides are of broad interest in thermo, photo, and electrocatalysis. H2 temperature-programmed reduction (H2-TPR) is commonly used to probe oxide reducibility by measuring the rate of H2 consumption during temperature ramps, assuming that this rate is controlled by oxide reduction. However, oxide reduction involves several elementary steps, such as H2 dissociation and H-spillover, before surface reduction and H2O formation occur. In this study, we evaluated the kinetics of H2 consumption over CeO2 and Pt/CeO2 with varying Pt loadings and structures to identify the elementary steps probed by H2-TPR. Literature often attributes changes in H2-TPR characteristics with Pt addition to increased CeO2 reducibility. However, our analysis revealed that the H2 consumption rate is measurement of the rate of H-spillover at Pt-CeO2 interfaces and is determined by the concentration of Pt species on Pt nanoclusters that dissociate H2. Therefore, lower temperature H2 consumption observed with Pt addition does not indicate higher CeO2 reducibility. Measurements on samples with mixtures of Pt single-atoms and nanoclusters demonstrated that H2-TPR can effectively quantify dilute Pt nanocluster concentrations, suggesting caution in directly linking H2-TPR characteristics to oxide reducibility while highlighting alternative material insights that can be gleaned.

J. Lee, P. Christopher, Does h2 temperature-programmed reduction always probe solid-state redox chemistry? The case of pt/ceo2, Angewandte Chemie International Edition, 2024, n/a, e202414388. DOI: 10.1002/anie.202414388.

催化新文
推介催化机理,催化材料,催化表征等多相催化领域课题的最新研究成果,促进行业内学者相互交流与讨论。
 最新文章