目前SK已支持OpenAI,Azure OpenAI,Gemini,HuggingFace,MistralAI等LLM,相信之后会越来越丰富。
首先要引入所对应的LLM包,具体项目文件如下:
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<OutputType>Exe</OutputType>
<TargetFramework>net9.0</TargetFramework>
<RootNamespace>Demo01_Kernel</RootNamespace>
<ImplicitUsings>enable</ImplicitUsings>
<Nullable>enable</Nullable>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Microsoft.Extensions.Logging" Version="9.0.0-preview.4.24266.19" />
<PackageReference Include="Microsoft.Extensions.Logging.Console" Version="9.0.0-preview.4.24266.19" />
<PackageReference Include="Microsoft.SemanticKernel" Version="1.14.1" />
<PackageReference Include="Microsoft.SemanticKernel.Connectors.Google" Version="1.14.1-alpha" />
<PackageReference Include="Microsoft.SemanticKernel.Connectors.HuggingFace" Version="1.14.1-preview" />
<PackageReference Include="Microsoft.SemanticKernel.Connectors.MistralAI" Version="1.14.1-alpha" />
</ItemGroup>
</Project>
SK作为装LLM的SDK,主要是通过Kernel展开的,这点和asp.net core类似,首先通过Kernel来创建一个Builder,然后给Bulder的Services添加各种服务,最后Build获取到Kernel,然后执行使用各种功能,实现操作。
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Logging.Console;
using Microsoft.Extensions.Options;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.ChatCompletion;
using Microsoft.SemanticKernel.Connectors.OpenAI;
using Microsoft.SemanticKernel.Services;
using System.Diagnostics.CodeAnalysis;
using System.Net.NetworkInformation;
var chatModelId = "gpt-4o";
var key = File.ReadAllText(@"C:\GPT\key.txt");
var endpoint = "";
#pragma warning disable SKEXP0010
#pragma warning disable SKEXP0070
var builder = Kernel.CreateBuilder()
.AddOpenAIChatCompletion(chatModelId, key);
//.AddAzureOpenAIChatCompletion(chatModelId, endpoint, key)
//.AddGoogleAIGeminiChatCompletion(chatModelId, key)
//.AddHuggingFaceChatCompletion(chatModelId, apiKey: key)
//.AddMistralChatCompletion(chatModelId, key)
//builder.Services.AddSingleton<IAIServiceSelector>(new GptAIServiceSelector());
//添加ServiceSelector
builder.Services.AddScoped<IAIServiceSelector, MyAIServiceSelector >();
//添回复自定义服务
builder.Services.AddScoped<IMyService, MyService>();
//添加日志服务
builder.Services.AddLogging(c => c
.AddConsole()
//.AddJsonConsole()
.SetMinimumLevel(LogLevel.Information));
Kernel kernel = builder.Build();
var logger = kernel.LoggerFactory.CreateLogger("logger");
var prompt = "你好,你能帮我做什么";
var result = await kernel.InvokePromptAsync(prompt);
var message = @$"返回信息:
{result.GetValue<string>()}";
logger.LogInformation(message);
class MyAIServiceSelector : IAIServiceSelector
{
private readonly IMyService _myService;
private readonly ILogger<GptAIServiceSelector> _logger;
public GptAIServiceSelector(IMyService myService, ILogger<GptAIServiceSelector> logger)
{
_myService = myService;
_logger = logger;
}
public bool TrySelectAIService<T>(
Kernel kernel, KernelFunction function, KernelArguments arguments,
[NotNullWhen(true)] out T? service, out PromptExecutionSettings? serviceSettings) where T : class, IAIService
{
_myService.Print();
foreach (var serviceToCheck in kernel.GetAllServices<T>())
{
var serviceModelId = serviceToCheck.GetModelId();
var endpoint = serviceToCheck.GetEndpoint();
if (!string.IsNullOrEmpty(serviceModelId))
{
_logger.LogInformation($"使用的模型: {serviceModelId} {endpoint}");
_logger.LogInformation($"服务类型: {serviceToCheck.GetType().Name}");
service = serviceToCheck;
serviceSettings = new OpenAIPromptExecutionSettings();
return true;
}
}
service = null;
serviceSettings = null;
return false;
}
}
//添加自定义服务
interface IMyService
{
void Print();
}
class MyService : IMyService
{
readonly ILogger<MyService> _logger;
public MyService(ILogger<MyService> logger)
{
_logger = logger;
logger.LogInformation("MyService实例化");
}
public void Print()
{
_logger.LogWarning("开始报警");
}
}