在前面的章节中,分别介绍了 Web、App、接口自动化测试用例的生成。但是在前文中实现的效果均为在控制台打印自动化测试的用例。用例需要手动粘贴,调整之后再执行。
那么其实这个手动粘贴、执行的过程,也是可以直接通过人工智能完成的。
应用价值
通过人工智能代替人工操作的部分,节省时间,提升效率。
通过封装更多的 Tools,让 Agent 更为智能。
实践演练
实现原理
实现思路
在理解需求之后,我们可以了解到我们需要让 Agent 具备两个功能:
输入源码信息,生成 python 文件。
输入文件名,执行 pytest 测试文件功能。
如此,可以通过如下两个步骤实现需求:
工具包封装。
实现 Agent。
工具包封装
为了让工具包更易被大模型理解,我们将注释调整为英文,提升准确率。同时为了传参的时候不出现格式错误问题,通过args_schema
限制参数结构与格式(tools 章节有具体讲解)。
from langchain_core.tools import tool
from pydantic.v1 import BaseModel, Field
class PythonFileInput(BaseModel):
# 定义参数的描述
filename: str = Field(description="filename")
source_code: str = Field(description="source code data")
class PytestFileName(BaseModel):
# 定义参数的描述
filename: str = Field(description="The name of the file to be executed")
def write_file(filename, source_code):
"""
Generate python files based on input source code
"""
with open(filename, "w") as f:
f.write(source_code)
def execute_test_file(filename):
"""
Pass in the file name, execute the test case and return the execution result
"""
import subprocess
# 使用subprocess模块执行pytest命令
result = subprocess.run(['pytest', filename], capture_output=True, text=True)
# 检查pytest的执行结果
if result.returncode == 0:
print("测试运行成功!")
else:
print("测试运行失败:")
print(result.stdout)
return result.stdout
通过 AGENT 实现需求
首先封装 Agent,绑定工具,输入提示词。在示例中,是在 LangChain 官方提供的
structured-chat-agent
提示词基础之上修改的提示词,添加了一个code
变量。目的是为了后面 code 可以由其他的 chain 的执行结果而来。
# 注意:需要再原提示词的基础上添加 {code} 变量
# prompt = hub.pull("hwchase17/structured-chat-agent")
llm = ChatOpenAI()
agent1 = create_structured_chat_agent(llm, tools_all, prompt)
agent_executor = AgentExecutor(
agent=agent1, tools=tools_all,
verbose=True,
return_intermediate_steps=True,
handle_parsing_errors=True)
if __name__ == '__main__':
agent_executor.invoke({"input": "请根据以上源码生成文件", "code": """def test_demo(): return True"""})
由以上的步骤,即可生成一个源码文件:
1. 在生成源码文件后,可以继续补充提示词,要求Agent 执行对应的测试用例:
if __name__ == '__main__':
agent_executor.invoke({"input": """
请根据以下步骤完成我让你完成操作,没有完成所有步骤不能停止:
1. 先根据以上源码生成文件。
2. 根据上一步生成的源码文件,进行执行测试用例操作,并返回终的执行结果
""",
"code": """def test_demo(): return True"""})
到这里,通过 Agent 就能自动生成测试用例文件,执行测试用例了。
与其他的场景结合
在前面的章节中,已经实现了自动生成接口自动化测试用例的操作。可以直接与前面的操作结合,自动生成接口自动化测试用例,并执行测试用用例。
注意:load_case 如何实现在前面章节:《基于LangChain手工测试用例转接口自动化测试生成工具》,已有对应讲解
# load_case 的返回结果是接口的自动化测试用例
chain = (
RunnablePassthrough.assign(code=load_case) | agent1
)
agent_executor = AgentExecutor(
agent=chain, tools=tools_all,
verbose=True,
return_intermediate_steps=True,
handle_parsing_errors=True)
if __name__ == '__main__':
agent_executor.invoke({"input": """
请根据以下步骤完成我让你完成操作,没有完成所有步骤不能停止:
1. 先根据以上源码生成文件。
2. 根据上一步生成的源码文件,进行执行测试用例操作,并返回终的执行结果
"""})
执行之后,即可在控制台看到生成的接口自动化测试用例的执行记录。
总结
自动化测试用例的生成与执行的实现原理。
自动化测试用例的生成与执行的实现思路。
利用 Agent 实现自动化测试用例的生成与执行。
总结
自动化测试用例的生成与执行的实现原理。
自动化测试用例的生成与执行的实现思路。
利用 Agent 实现自动化测试用例的生成与执行。
推荐学习
人工智能测试开发训练营,为大家提供全方位的人工智能测试知识和技能培训。行业专家授课,实战驱动,并提供人工智能答疑福利。
内容包含ChatGPT与私有大语言模型的多种应用,人工智能应用开发框架 LangChain,视觉与图像识别自动化测试,人工智能产品质量保障与测试,知识图谱与模型驱动测试,深度学习应用,带你一站式掌握人工智能测试开发必备核心技能,快速提升核心竞争力!