人工智能 | 检索增强生成(RAG)

文摘   2024-11-20 08:00   北京  

简介


现有的 ChatGPT 的大语言模型中,虽然它本身的功能已经非常强悍了,但是它依然存在一些致命的问题:
  1. 偏见:大语言模型没有分辨好坏的能力,所以在回答问题的时候,如果不做任何调整,可能会返回一些不好的内容,比如性别歧视,种族歧视。
  2. 幻觉:大语言模型有时候并不那么靠谱,返回的内容会让人觉得驴唇不对马嘴。包括信息也无法完全可信。
  3. 信息过时:因为没有联网能力,那么代表着从 2023 年 x 月 x 日之后所有的信息,它都是不了解的。
那么大模型 LLM 如何解决这些问题,使其生成的内容质量更高,就成了一个难题。而 RAG(Retrieval-Augmented Generation),通过将检索模型和生成模型(LLM)结合在一起,即可提高了生成内容的相关性和质量。



RAG 的优点


  1. 外部知识的利用。
  2. 数据及时更新。
  3. 高度定制能力。
  4. 减少成本。

RAG 的应用场景


RAG 技术的主要应用场景为:
  1. 问答系统(QA Systems):RAG 可以用于构建强大的问答系统,能够回答用户提出的各种问题。它能够通过检索大规模文档集合来提供准确的答案,无需针对每个问题进行特定训练。
  2. 文档生成和自动摘要(Document Generation and Automatic Summarization):RAG 可用于自动生成文章段落、文档或自动摘要,基于检索的知识来填充文本,使得生成的内容更具信息价值。
  3. 智能助手和虚拟代理(Intelligent Assistants and Virtual Agents):RAG 可以用于构建智能助手或虚拟代理,结合聊天记录回答用户的问题、提供信息和执行任务,无需进行特定任务微调。
  4. 信息检索(Information Retrieval):RAG 可以改进信息检索系统,使其更准确深刻。用户可以提出更具体的查询,不再局限于关键词匹配。
  5. 知识图谱填充(Knowledge Graph Population):RAG 可以用于填充知识图谱中的实体关系,通过检索文档来识别和添加新的知识点。


RAG 检索增强的原理


从上图可能很多同学非常好奇,大模型是如何与“外挂”数据库进行交互的。不是说大模型不能联网吗?其实大模型和数据库的交互,也是通过提示词完成的。
当然在以上实现过程中,可能会有数据信息极为庞大,而且冗余,如果直接发给大模型,上下文也会极为庞大。所以通常在这种情况下,会对数据库内的数据做一个预处理。让其变的易检索。这个预处理的过程,就使用了向量数据库以及embedding
如下这张图便是 RAG 的完整过程:


RAG 实践应用


LangChain 包括 ChatGPT 的官方 assistant 的 Retrieval 其实都利用了 RAG 的原理。在后续的课程中会有更深入的实战应用。比如打造垂直领域内容的问答机器人

相关资料


  • RAG 官方文档说明


总结


  1. 理解什么是 RAG 检索增强。
  2. 理解 RAG 检索增强应用场景。
  3. 了解 RAG 检索增强有哪些相关的使用方法。
  4. 在后续的学习过程中,会结合 LangChain 与 assistant 完成 RAG 相关的实战练习。

推荐学习

人工智能测试开发训练营为大家提供全方位的人工智能测试知识和技能培训行业专家授课,实战驱动,并提供人工智能答疑福利内容包含ChatGPT与私有大语言模型的多种应用,人工智能应用开发框架 LangChain,视觉与图像识别自动化测试,人工智能产品质量保障与测试,知识图谱与模型驱动测试,深度学习应用带你一站式掌握人工智能测试开发必备核心技能,快速提升核心竞争力!

霍格沃兹测试学院
霍格沃兹测试学院致力于培养专业的测试人才,推动测试行业的技术更新和发展,我们本着此宗旨,为您提供测试技术培训和实战,让您真正的可以在测试能力上获得提升。
 最新文章