论文周报[1021-1027] | 推荐系统领域最新研究进展(12篇)

科技   2024-10-28 08:01   北京  
嘿,记得给“机器学习与推荐算法”添加星标

本文精选了上周(1021-1027)最新发布的12篇推荐系统相关论文,主要研究方向包括基于语言用户属性的端到端训练推荐算法、大推荐模型的数据效率、会话互惠推荐、图对比学习公平性推荐、大规模序列推荐中的负采样技术、生成式检索中的搜索与推荐、动态uplift建模用于实时视频推荐、基于大模型的简单免训练推荐方法、释放检索中多通道融合在个性化推荐的潜力、对话式推荐、量子退火推荐系统、引入组先验到变分框架的点击率预估等。

1.  End-to-end Training for Recommendation with Language-based User Profiles
2.  Data Efficiency for Large Recommendation Models
3.  CUPID: A Real-Time Session-Based Reciprocal Recommendation System for a One-on-One Social Discovery Platform
4.  FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning
5.  Evaluating Performance and Bias of Negative Sampling in Large-Scale Sequential Recommendation Models
6.  Bridging Search and Recommendation in Generative Retrieval: Does One Task Help the Other?
7.  Coarse-to-fine Dynamic Uplift Modeling for Real-time Video Recommendation
8.  STAR: A Simple Training-free Approach for Recommendations using Large Language Models
9.  Unleashing the Potential of Multi-Channel Fusion in Retrieval for Personalized Recommendations
10.  Beyond Retrieval: Generating Narratives in Conversational Recommender Systems
11.  Performance-Driven QUBO for Recommender Systems on Quantum Annealers
12.  Incorporating Group Prior into Variational Inference for Tail-User Behavior Modeling in CTR Prediction

1.  End-to-end Training for Recommendation with Language-based User Profiles

Zhaolin Gao, Joyce Zhou, Yijia Dai, Thorsten Joachims

https://arxiv.org/abs/2410.18870

Many online platforms maintain user profiles for personalization. Unfortunately, these profiles are typically not interpretable or easily modifiable by the user. To remedy this shortcoming, we explore natural language-based user profiles, as they promise enhanced transparency and scrutability of recommender systems. While existing work has shown that language-based profiles from standard LLMs can be effective, such generalist LLMs are unlikely to be optimal for this task. In this paper, we introduce LangPTune, the first end-to-end learning method for training LLMs to produce language-based user profiles that optimize recommendation effectiveness. Through comprehensive evaluations of LangPTune across various training configurations and benchmarks, we demonstrate that our approach significantly outperforms existing profile-based methods. In addition, it approaches performance levels comparable to state-of-the-art, less transparent recommender systems, providing a robust and interpretable alternative to conventional systems. Finally, we validate the relative interpretability of these language-based user profiles through user studies involving crowdworkers and GPT-4-based evaluations. Implementation of LangPTune can be found at https://github.com/ZhaolinGao/LangPTune

2.  Data Efficiency for Large Recommendation Models

Kshitij Jain, Jingru Xie, Kevin Regan, Cheng Chen, Jie Han, Steve Li, Zhuoshu Li, Todd Phillips, Myles Sussman, Matt Troup, Angel Yu, Jia Zhuo

https://arxiv.org/abs/2410.18111

Large recommendation models (LRMs) are fundamental to the multi-billion dollar online advertising industry, processing massive datasets of hundreds of billions of examples before transitioning to continuous online training to adapt to rapidly changing user behavior. The massive scale of data directly impacts both computational costs and the speed at which new methods can be evaluated (R&D velocity).

This paper presents actionable principles and high-level frameworks to guide practitioners in optimizing training data requirements. These strategies have been successfully deployed in Google's largest Ads CTR prediction models and are broadly applicable beyond LRMs. We outline the concept of data convergence, describe methods to accelerate this convergence, and finally, detail how to optimally balance training data volume with model size.

3.  CUPID: A Real-Time Session-Based Reciprocal Recommendation System for a One-on-One Social Discovery Platform

Beomsu Kim, Sangbum Kim, Minchan Kim, Joonyoung Yi, Sungjoo Ha, Suhyun Lee, Youngsoo Lee, Gihun Yeom, Buru Chang, Gihun Lee

https://arxiv.org/abs/2410.18087

This study introduces CUPID, a novel approach to session-based reciprocal recommendation systems designed for a real-time one-on-one social discovery platform. In such platforms, low latency is critical to enhance user experiences. However, conventional session-based approaches struggle with high latency due to the demands of modeling sequential user behavior for each recommendation process. Additionally, given the reciprocal nature of the platform, where users act as items for each other, training recommendation models on large-scale datasets is computationally prohibitive using conventional methods. To address these challenges, CUPID decouples the time-intensive user session modeling from the real-time user matching process to reduce inference time. Furthermore, CUPID employs a two-phase training strategy that separates the training of embedding and prediction layers, significantly reducing the computational burden by decreasing the number of sequential model inferences by several hundredfold. Extensive experiments on large-scale Azar datasets demonstrate CUPID's effectiveness in a real-world production environment. Notably, CUPID reduces response latency by more than 76% compared to non-asynchronous systems, while significantly improving user engagement.

4.  FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning

Wei Chen, Meng Yuan, Zhao Zhang, Ruobing Xie, Fuzhen Zhuang, Deqing Wang, Rui Liu

https://arxiv.org/abs/2410.17555

As trustworthy AI continues to advance, the fairness issue in recommendations has received increasing attention. A recommender system is considered unfair when it produces unequal outcomes for different user groups based on user-sensitive attributes (e.g., age, gender). Some researchers have proposed data augmentation-based methods aiming at alleviating user-level unfairness by altering the skewed distribution of training data among various user groups. Despite yielding promising results, they often rely on fairness-related assumptions that may not align with reality, potentially reducing the data quality and negatively affecting model effectiveness. To tackle this issue, in this paper, we study how to implement high-quality data augmentation to improve recommendation fairness. Specifically, we propose FairDgcl, a dynamic graph adversarial contrastive learning framework aiming at improving fairness in recommender system. First, FairDgcl develops an adversarial contrastive network with a view generator and a view discriminator to learn generating fair augmentation strategies in an adversarial style. Then, we propose two dynamic, learnable models to generate contrastive views within contrastive learning framework, which automatically fine-tune the augmentation strategies. Meanwhile, we theoretically show that FairDgcl can simultaneously generate enhanced representations that possess both fairness and accuracy. Lastly, comprehensive experiments conducted on four real-world datasets demonstrate the effectiveness of the proposed FairDgcl. he code can be found at https://github.com/cwei01/FairDgcl.

5.  Evaluating Performance and Bias of Negative Sampling in Large-Scale Sequential Recommendation Models

Arushi Prakash, Dimitrios Bermperidis, Srivas Chennu

https://arxiv.org/abs/2410.17276

Large-scale industrial recommendation models predict the most relevant items from catalogs containing millions or billions of options. To train these models efficiently, a small set of irrelevant items (negative samples) is selected from the vast catalog for each relevant item (positive example), helping the model distinguish between relevant and irrelevant items. Choosing the right negative sampling method is a common challenge. We address this by implementing and comparing various negative sampling methods - random, popularity-based, in-batch, mixed, adaptive, and adaptive with mixed variants - on modern sequential recommendation models. Our experiments, including hyperparameter optimization and 20x repeats on three benchmark datasets with varying popularity biases, show how the choice of method and dataset characteristics impact key model performance metrics. We also reveal that average performance metrics often hide imbalances across popularity bands (head, mid, tail). We find that commonly used random negative sampling reinforces popularity bias and performs best for head items. Popularity-based methods (in-batch and global popularity negative sampling) can offer balanced performance at the cost of lower overall model performance results. Our study serves as a practical guide to the trade-offs in selecting a negative sampling method for large-scale sequential recommendation models.

6.  Bridging Search and Recommendation in Generative Retrieval: Does One Task Help the Other?

Gustavo Penha, Ali Vardasbi, Enrico Palumbo, Marco de Nadai, Hugues Bouchard

https://arxiv.org/abs/2410.16823

Generative retrieval for search and recommendation is a promising paradigm for retrieving items, offering an alternative to traditional methods that depend on external indexes and nearest-neighbor searches. Instead, generative models directly associate inputs with item IDs. Given the breakthroughs of Large Language Models (LLMs), these generative systems can play a crucial role in centralizing a variety of Information Retrieval (IR) tasks in a single model that performs tasks such as query understanding, retrieval, recommendation, explanation, re-ranking, and response generation. Despite the growing interest in such a unified generative approach for IR systems, the advantages of using a single, multi-task model over multiple specialized models are not well established in the literature.

This paper investigates whether and when such a unified approach can outperform task-specific models in the IR tasks of search and recommendation, broadly co-existing in multiple industrial online platforms, such as Spotify, YouTube, and Netflix. Previous work shows that (1) the latent representations of items learned by generative recommenders are biased towards popularity, and (2) content-based and collaborative-filtering-based information can improve an item's representations. Motivated by this, our study is guided by two hypotheses: [H1] the joint training regularizes the estimation of each item's popularity, and [H2] the joint training regularizes the item's latent representations, where search captures content-based aspects of an item and recommendation captures collaborative-filtering aspects. Our extensive experiments with both simulated and real-world data support both [H1] and [H2] as key contributors to the effectiveness improvements observed in the unified search and recommendation generative models over the single-task approaches.

7.  Coarse-to-fine Dynamic Uplift Modeling for Real-time Video Recommendation

Chang Meng, Chenhao Zhai, Xueliang Wang, Shuchang Liu, Xiaoqiang Feng, Lantao Hu, Xiu Li, Han Li, Kun Gai

https://arxiv.org/abs/2410.16755

With the rise of short video platforms, video recommendation technology faces more complex challenges. Currently, there are multiple non-personalized modules in the video recommendation pipeline that urgently need personalized modeling techniques for improvement. Inspired by the success of uplift modeling in online marketing, we attempt to implement uplift modeling in the video recommendation scenario. However, we face two main challenges: 1) Design and utilization of treatments, and 2) Capture of user real-time interest. To address them, we design adjusting the distribution of videos with varying durations as the treatment and propose Coarse-to-fine Dynamic Uplift Modeling (CDUM) for real-time video recommendation. CDUM consists of two modules, CPM and FIC. The former module fully utilizes the offline features of users to model their long-term preferences, while the latter module leverages online real-time contextual features and request-level candidates to model users' real-time interests. These two modules work together to dynamically identify and targeting specific user groups and applying treatments effectively. Further, we conduct comprehensive experiments on the offline public and industrial datasets and online A/B test, demonstrating the superiority and effectiveness of our proposed CDUM. Our proposed CDUM is eventually fully deployed on the Kuaishou platform, serving hundreds of millions of users every day. The source code will be provided after the paper is accepted.

8.  STAR: A Simple Training-free Approach for Recommendations using Large Language Models

Dong-Ho Lee, Adam Kraft, Long Jin, Nikhil Mehta, Taibai Xu, Lichan Hong, Ed H. Chi, Xinyang Yi

https://arxiv.org/abs/2410.16458

Recent progress in large language models (LLMs) offers promising new approaches for recommendation system (RecSys) tasks. While the current state-of-the-art methods rely on fine-tuning LLMs to achieve optimal results, this process is costly and introduces significant engineering complexities. Conversely, methods that bypass fine-tuning and use LLMs directly are less resource-intensive but often fail to fully capture both semantic and collaborative information, resulting in sub-optimal performance compared to their fine-tuned counterparts. In this paper, we propose a Simple Training-free Approach for Recommendation (STAR), a framework that utilizes LLMs and can be applied to various recommendation tasks without the need for fine-tuning. Our approach involves a retrieval stage that uses semantic embeddings from LLMs combined with collaborative user information to retrieve candidate items. We then apply an LLM for pairwise ranking to enhance next-item prediction. Experimental results on the Amazon Review dataset show competitive performance for next item prediction, even with our retrieval stage alone. Our full method achieves Hits@10 performance of +23.8% on Beauty, +37.5% on Toys and Games, and -1.8% on Sports and Outdoors relative to the best supervised models. This framework offers an effective alternative to traditional supervised models, highlighting the potential of LLMs in recommendation systems without extensive training or custom architectures.

9.  Unleashing the Potential of Multi-Channel Fusion in Retrieval for Personalized Recommendations

Junjie Huang, Jiarui Qin, Jianghao Lin, Ziming Feng, Yong Yu, Weinan Zhang

https://arxiv.org/abs/2410.16080

Recommender systems (RS) are pivotal in managing information overload in modern digital services. A key challenge in RS is efficiently processing vast item pools to deliver highly personalized recommendations under strict latency constraints. Multi-stage cascade ranking addresses this by employing computationally efficient retrieval methods to cover diverse user interests, followed by more precise ranking models to refine the results. In the retrieval stage, multi-channel retrieval is often used to generate distinct item subsets from different candidate generators, leveraging the complementary strengths of these methods to maximize coverage. However, forwarding all retrieved items overwhelms downstream rankers, necessitating truncation. Despite advancements in individual retrieval methods, multi-channel fusion, the process of efficiently merging multi-channel retrieval results, remains underexplored.

We are the first to identify and systematically investigate multi-channel fusion in the retrieval stage. Current industry practices often rely on heuristic approaches and manual designs, which often lead to suboptimal performance. Moreover, traditional gradient-based methods like SGD are unsuitable for this task due to the non-differentiable nature of the selection process. In this paper, we explore advanced channel fusion strategies by assigning systematically optimized weights to each channel. We utilize black-box optimization techniques, including the Cross Entropy Method and Bayesian Optimization for global weight optimization, alongside policy gradient-based approaches for personalized merging. Our methods enhance both personalization and flexibility, achieving significant performance improvements across multiple datasets and yielding substantial gains in real-world deployments, offering a scalable solution for optimizing multi-channel fusion in retrieval.

10.  Beyond Retrieval: Generating Narratives in Conversational Recommender Systems

Krishna Sayana, Raghavendra Vasudeva, Yuri Vasilevski, Kun Su, Liam Hebert, Hubert Pham, Ambarish Jash, Sukhdeep Sodhi

https://arxiv.org/abs/2410.16780

The recent advances in Large Language Model's generation and reasoning capabilities present an opportunity to develop truly conversational recommendation systems. However, effectively integrating recommender system knowledge into LLMs for natural language generation which is tailored towards recommendation tasks remains a challenge. This paper addresses this challenge by making two key contributions. First, we introduce a new dataset (REGEN) for natural language generation tasks in conversational recommendations. REGEN (Reviews Enhanced with GEnerative Narratives) extends the Amazon Product Reviews dataset with rich user narratives, including personalized explanations of product preferences, product endorsements for recommended items, and summaries of user purchase history. REGEN is made publicly available to facilitate further research.

Furthermore, we establish benchmarks using well-known generative metrics, and perform an automated evaluation of the new dataset using a rater LLM. Second, the paper introduces a fusion architecture (CF model with an LLM) which serves as a baseline for REGEN. And to the best of our knowledge, represents the first attempt to analyze the capabilities of LLMs in understanding recommender signals and generating rich narratives. We demonstrate that LLMs can effectively learn from simple fusion architectures utilizing interaction-based CF embeddings, and this can be further enhanced using the metadata and personalization data associated with items. Our experiments show that combining CF and content embeddings leads to improvements of 4-12% in key language metrics compared to using either type of embedding individually. We also provide an analysis to interpret how CF and content embeddings contribute to this new generative task.

11.  Performance-Driven QUBO for Recommender Systems on Quantum Annealers

Jiayang Niu, Jie Li, Ke Deng, Mark Sanderson, Yongli Ren

https://arxiv.org/abs/2410.15272

We propose Counterfactual Analysis Quadratic Unconstrained Binary Optimization (CAQUBO) to solve QUBO problems for feature selection in recommender systems. CAQUBO leverages counterfactual analysis to measure the impact of individual features and feature combinations on model performance and employs the measurements to construct the coefficient matrix for a quantum annealer to select the optimal feature combinations for recommender systems, thereby improving their final recommendation performance. By establishing explicit connections between features and the recommendation performance, the proposed approach demonstrates superior performance compared to the state-of-the-art quantum annealing methods. Extensive experiments indicate that integrating quantum computing with counterfactual analysis holds great promise for addressing these challenges.

12.  Incorporating Group Prior into Variational Inference for Tail-User Behavior Modeling in CTR Prediction

Han Xu, Taoxing Pan, Zhiqiang Liu, Xiaoxiao Xu, Lantao Hu

https://arxiv.org/abs/2410.15098

User behavior modeling -- which aims to extract user interests from behavioral data -- has shown great power in Click-through rate (CTR) prediction, a key component in recommendation systems. Recently, attention-based algorithms have become a promising direction, as attention mechanisms emphasize the relevant interactions from rich behaviors. However, the methods struggle to capture the preferences of tail users with sparse interaction histories. To address the problem, we propose a novel variational inference approach, namely Group Prior Sampler Variational Inference (GPSVI), which introduces group preferences as priors to refine latent user interests for tail users. In GPSVI, the extent of adjustments depends on the estimated uncertainty of individual preference modeling. In addition, We further enhance the expressive power of variational inference by a volume-preserving flow. An appealing property of the GPSVI method is its ability to revert to traditional attention for head users with rich behavioral data while consistently enhancing performance for long-tail users with sparse behaviors. Rigorous analysis and extensive experiments demonstrate that GPSVI consistently improves the performance of tail users. Moreover, online A/B testing on a large-scale real-world recommender system further confirms the effectiveness of our proposed approach.


欢迎干货投稿 \ 论文宣传 \ 合作交流

推荐阅读

LightRAG: 让大模型检索增强准确且高效

CIKM2024推荐系统论文集锦

论文周报[1014-1020] | 推荐系统领域最新研究进展

由于公众号试行乱序推送,您可能不再准时收到机器学习与推荐算法的推送。为了第一时间收到本号的干货内容, 请将本号设为星标,以及常点文末右下角的“在看”。

喜欢的话点个在看吧👇

机器学习与推荐算法
专注于分享经典的推荐技术,致力于传播基础的机器学习、深度学习、数据挖掘等方面的知识。
 最新文章