无论是什么优化算法,最后都可以用一个简单的公式抽象:
是参数,而 是参数的增量,而各种优化算法的主要区别在于对 的计算不同,本文总结了下面十个优化算法的公式,以及简单的Python实现:
SGD Momentum Nesterov Momentum AdaGrad RMSProp AdaDelta Adam AdaMax Nadam NadaMax
虽然有凑数的嫌疑,不过还是把SGD也顺带说一下,就算做一个符号说明了。常规的随机梯度下降公式如下:
其中 是学习率, 是损失关于参数的梯度(有的资料中会写成 等形式),不过相比SGD,用的更多的还是小批量梯度下降(mBGD)算法,不同之处在于一次训练使用多个样本,然后取所有参与训练样本梯度的平均来更新参数,公式如下:
其中 是第 次训练中 个样本损失关于参数梯度的均值,如无特别声明,下文所出现 也遵循该定义。
另外 或者 在下面的优化算法中,只是作为一个传入的变量,其具体的计算是由其他模块负责,可以参考下面两个链接:
Numpy实现神经网络框架(3)——线性层反向传播推导及实现:
https://zhuanlan.zhihu.com/p/67854272
卷积核梯度计算的推导及实现:
https://zhuanlan.zhihu.com/p/64248652
import numpy as np
class Momentum(object):
def __init__(self, alpha=0.9, lr=1e-3):
self.alpha = alpha # 动量系数
self.lr = lr # 学习率
self.v = 0 # 初始速度为0
def update(self, g: np.ndarray): # g = J'(w) 为本轮训练参数的梯度
self.v = self.alpha * self.v - self.lr * g # 公式
return self.v # 返回的是参数的增量,下同
那么Nesterov Momentum就提前使用这个梯度进行更新:
class AdaGrad(object):
def __init__(self, eps=1e-8, lr=1e-3):
self.r = eps # r_0 = epsilon
self.lr = lr
def update(self, g: np.ndarray):
r = r + np.square(g)
return -self.lr * g / np.sqrt(r)
class RMSProp(object):
def __init__(self, lr=1e-3, beta=0.999, eps=1e-8):
self.r = eps
self.lr = lr
self.beta = beta
def update(self, g: np.ndarray):
r = r * self.beta + (1-self.beta) * np.square(g)
return -self.lr * g / np.sqrt(r)
class AdaDelta(object):
def __init__(self, beta=0.999, eps=1e-8):
self.r = eps
self.s = eps
self.beta = beta
def update(self, g: np.ndarray):
g_square = (1-self.beta) * np.square(g) # (1-beta)*g^2
r = r * self.beta + g_square
frac = s / r
res = -np.sqrt(frac) * g
s = s * self.beta + frac * g_squaretmp # 少一次乘法。。。
return res
class Adam(object):
def __init__(self, lr=1e-3, alpha=0.9, beta=0.999, eps=1e-8):
self.s = 0
self.r = eps
self.lr = lr
self.alpha = alpha
self.beta = beta
self.alpha_i = 1
self.beta_i = 1
def update(self, g: np.ndarray):
self.s = self.s * self.alpha + (1-self.alpha) * g
self.r = self.r * self.beta + (1-self.beta) * np.square(g)
self.alpha_i *= self.alpha
self.beta_i *= self.beta_i
lr = -self.lr * (1-self.beta_i)**0.5 / (1-self.alpha_i)
return lr * self.s / np.sqrt(self.r)
class AdaMax(object):
def __init__(self, lr=1e-3, alpha=0.9, beta=0.999):
self.s = 0
self.r = 0
self.lr = lr
self.alpha = alpha
self.alpha_i = 1
self.beta = beta
def update(self, g: np.ndarray):
self.s = self.s * self.alpha + (1-self.alpha) * g
self.r = np.maximum(self.r*self.beta, np.abs(g))
self.alpha_i *= self.alpha
lr = -self.lr / (1-self.alpha_i)
return lr * self.s / self.r
class Nadam(object):
def __init__(self, lr=1e-3, alpha=0.9, beta=0.999, eps=1e-8):
self.s = 0
self.r = eps
self.lr = lr
self.alpha = alpha
self.beta = beta
self.alpha_i = 1
self.beta_i = 1
def update(self, g: np.ndarray):
self.s = self.s * self.alpha + (1-self.alpha) * g
self.r = self.r * self.beta + (1-self.beta) * np.square(g)
self.alpha_i *= self.alpha
self.beta_i *= self.beta_i
lr = -self.lr * (1-self.beta_i)**0.5 / (1-self.alpha_i)
return lr * (self.s * self.alpha + (1-self.alpha) * g) / np.sqrt(self.r)
class NadaMax(object):
def __init__(self, lr=1e-3, alpha=0.9, beta=0.999):
self.s = 0
self.r = 0
self.lr = lr
self.alpha = alpha
self.alpha_i = 1
self.beta = beta
def update(self, g: np.ndarray):
self.s = self.s * self.alpha + (1-self.alpha) * g
self.r = np.maximum(self.r*self.beta, np.abs(g))
self.alpha_i *= self.alpha
lr = -self.lr / (1-self.alpha_i)
return lr * (self.s * self.alpha + (1-self.alpha) * g) / self.r
参考资料:
[4]: An overview of gradient descent optimization algorithms(https://ruder.io/optimizing-gradient-descent/index.html)
学术分享,知乎
https://zhuanlan.zhihu.com/p/81020717