Fig. 1| Theoretical screening of organic cations. a The chemical structures and electrostatic potential of BG+, VBE+, LBE+, and TS-. b The binding energy of BGTS, VBETS, and LBETS with FAPbI3 containing PbI anti-site, VI, and VFAdefects. c-e, The binding energy of (c) BG+, (d) VBE+, and (e) LBE+ cations with FAPbI3containing VFA defects. f Binding energy of An+, MA+, EA+, BG+, VBE+, and LBE+with FAPbI3 containing VFA defects. g-i Charge density difference of (g) BG+, (h) VBE+, and (i) LBE+ with FAPbI3 surface encompassing VFAdefects (cyan indicates a decrease in charge density, yellow indicates an increase in charge density).
Fig. 2|Chemical interactions and perovskite film quality. a XPS spectra of S 2p in the control and BGTS, VBETS, or LBETS-modified perovskite films. b, c XPS spectra of (b) Pb 4f and (c) I 3d in control and BGTS, VBETS, or LBETS modified perovskite films. d-f FTIR for (d) BGTS and BGTS+PbI2, (e) VBETS and VBETS+PbI2, and (f) LBETS and LBETS+PbI2. g, h Steady-state PL (g) and TRPL (h) spectra of the control, BGTS, VBETS, and LBETS-modified perovskite films on a bare glass substrate. i I-V curves of the devices based on ITO/SnO2/perovskite (BGTS, VBETS, and LBETS)/C60/Agstructure under dark.
Fig. 3| Surface potentials and energy level of perovskite films. a SEM images of the control, BGTS, VBETS, and LBETS-modified 1.58 eV-Cs0.05(FA0.95MA0.05)0.95Pb(I0.95Br0.05)3perovskite films. b LBIC mapping images of the control, BGTS-, VBETS-, and LBETS-modified 1.58 eV-Cs0.05(FA0.95MA0.05)0.95Pb(I0.95Br0.05)3based PSCs, the top row is fresh perovskite films and the bottom row is perovskite films after aging for 5 days at room temperature under RH of 60 ± 10%. cKPFM images of the control, BGTS, VBETS, and LBETS-modified 1.58 eV-Cs0.05(FA0.95MA0.05)0.95Pb(I0.95Br0.05)3perovskite films. d Tangent lines in KPFM images to demonstrate changes in surface potential. e UPS spectra of the control, BGTS, VBETS, and LBETS-modified perovskite films. f Energy level diagram of the control and BGTS, VBETS, and LBETS-modified perovskite films.
Fig. 4| Device performance and long-term stability. a-c Champion J-Vcurves of the best-performing control and VBETS-modified (a) 1.53 eV (prepared in the ambient conditions), (b) 1.53 eV (prepared in the glovebox with 99.999% N2 conditions), and (c) 1.66 eV perovskite-based PSC devices in reverse and forward scan mode. d The column-shaped statistical chart of PCE, VOC, JSC, and FF parameters for control devices and VBETS-modified devices based on 1.53 eV, 1.58 eV, and 1.66 eV perovskite as photoactive layer Specifically, * represents that perovskite devices are prepared in N2 glove boxes, while the others are prepared under air ambient conditions. e The EQE spectra and integrated JSC of the champion VBETS-modified PSCs with 1.53 eV, 1.58 eV, and 1.66 eV perovskites. f J-V curves of the 1.58 eV-perovskite-based PSC modules with VBETS modification. The inset is the photograph of a VBETS-modified perovskite module with an aperture area of 32.144 cm2. g Comparison of the historical PCEs of the PSC module with an aperture area exceeding 30 cm2. h Cross-sectional SEM image for exhibiting the device structure of perovskite/HJT crystalline silicon TSCs modified with VBETS. i J-V curves for the TSCs without and with VBETS in reverse and forward scan mode. j MPPT stability curves of the single-junction PSCs without and with VBETS.
论文链接:
Zuolin Zhang#, Yinsu Feng#, Jike Ding#, Quanxing Ma#, Hong Zhang*, Jiajia Zhang*, Mengjia Li, Taoran Geng, Wenhuan Gao, Yang Wang*, Boxue Zhang, Thierry Pauporté, Jian-Xin Tang*, Hongjian Chen, Jiangzhao Chen*, Cong Chen*. Rationally designed universal passivator for high-performance single-junction and tandem perovskite solar cells. Nature Communications 2025, 16, 753.
https://www.nature.com/articles/s41467-025-56068-6
赵清课题组网站:http://faculty.pku.edu.cn/~vuaQVn/zh_CN/index.htm
蓝光钙钛矿LED最高EQE26.4% 保持团队:浙江大学狄大卫&叶志镇&戴兴良团队 更新时间:2024年7月17日
钙钛矿太阳能电池世界记录每日更新
钙钛矿/硅叠层太阳能电池最高认证光电转化效率34.6% 保持单位:隆基
中国科学院物理研究所孟庆波团队
钙钛矿室内光伏组件最高认证孔径面积效率34.94%/国家光伏产业计量测试中心认证(12.80 cm2) 保持团队:暨南大学麦耀华教授团队
露天制备钙钛矿太阳能电池最高效率25.74% 保持团队:中国华北电力大学李美成团队 更新时间:2024年3月26日
基于TiO2的平面钙钛矿太阳能电池中最高的效率24.8% 保持团队:华北电力大学李美成团队 更新时间:2022年8月4日
锡铅混合钙钛矿太阳能电池最高效率24.13% 保持团队:上海交通大学陈汉团队 更新时间:2024年8月12日
宽带隙钙(1.67 eV)钛矿太阳能电池最高效率24.48% 保持团队:华侨大学谢立强&魏展画&徐西鹏 更新时间:2024年12月4日
CsPbBr3最高开路电压1.702V 保持团队:中国暨南大学段加龙&唐群委团队 更新时间:2021年8月8日
CsPbI2Br最高开路电压1.45V 保持团队:德国埃尔兰根-纽伦堡大学Ning Li&Christoph J. Brabec团队 更新时间:2022年10月24日
CsPbIBr2最高开路电压1.54V 保持团队:日本横滨大学Zhanglin Guo&Tsutomu Miyasaka团队 更新时间:2022年8月21日
无掺杂空穴传输材料正式器件最高效率24.6% 保持团队:韩国高丽大学Eui Hyuk Jung&Jun Hong Noh团队 更新时间:2021年3月2日
全无机钙钛矿太阳能电池最高效率22.2% 保持团队:陕西师范大学田庆文&刘生忠 更新时间:2024年11月20日
刮涂钙钛矿太阳能电池最高效率23.19% 保持团队:香港理工大学刘宽&李刚团队及其合作团队黄勃龙团队 更新时间:2022年3月14日
CVD沉积钙钛矿太阳能电池最高效率21.98% 保持团队:日本冲绳科学技术大学院大学(OIST)戚亚冰教授团队&合肥工业大学童国庆教授团队 更新时间:2023年4月14日
真空沉积钙钛矿太阳能电池最高效率24.4% 保持团队:清华大学易陈谊团队 更新时间:2022年7月15日
碳电极钙钛矿太阳能电池最高效率22.45% 保持团队:大连理工大学Yanying Shi&王宇迪&史彦涛 更新时间:2024年9月23日
无HTM碳电极全无机钙钛矿太阳能电池最高效率19.65% 保持团队:华南农业大学饶华商&钟新华团队 更新时间:2025年1月13日