java stream实战:30个案例精通集合筛选、归约、分组与聚合操作

文摘   2024-09-28 19:01   广东  


  • 一、Stream流的特点和使用流程

    • 1. 特点

    • 2. 使用流程

  • 二、Stream流的魅力

  • 三、stream流的创建

    • 1. 通过集合创建

    • 2. 通过数组创建

    • 3. 通过Stream的静态方法

    • 4. 通过随机数生成

    • 5. 通过文件I/O

    • 6. 无限流

    • 7. 通过范围创建

  • 四、Stream流的应用

    • 1. 中间操作

    • 2. 终端操作

    • 3. 收集操作

    • 4 其他操作:sequential(顺序流)/parallel(并行流)

一、Stream流的特点和使用流程

Stream API允许开发者以声明性方式处理数据集合。可以简化复杂的数据操作,并且支持并行处理以提高性能。

1. 特点

  • 声明性: Stream API允许你描述你想要做什么,而不是详细说明怎么做。
  • 链式操作: 可将多个操作链接在一起,形成一个流水线,每个操作都会生成一个新的流供下一个操作使用。
  • 函数式编程: Stream API鼓励使用无副作用的函数和 lambda 表达式。
  • 并行处理: Stream API支持并行流,可以充分利用多核处理器。
  • 延迟执行: Stream 操作是惰性的,只有在终端操作(如 collect、forEach)被调用时,整个流水线才会执行。
  • 短路操作: 某些终端操作(如 anyMatch、allMatch、noneMatch、findFirst)在找到结果后会立即停止处理。

2. 使用流程

  • 创建流: 从数据源(如集合、数组、文件等)创建一个流。
  List<String> list = Arrays.asList("a""b""c");   
  Stream<String> stream = list.stream();
  • 中间操作: 对流进行一系列转换操作,如 filter(过滤)、map(映射)、sorted(排序)等。这些操作会返回一个新的流,不会立即执行。
Stream<String> filteredStream = stream.filter(s -> s.startsWith("a"));
  • 终端操作: 执行一个终端操作来结束流的处理并产生结果。终端操作会触发整个流水线的执行,并且不会返回一个新的流。
List<String> result = filteredStream.collect(Collectors.toList());
  • 处理结果: 使用终端操作返回的结果进行后续处理。
 result.forEach(System.out::println);

流只能被使用一次。一旦终端操作被触发,流就会被关闭,无法再次使用。

二、Stream流的魅力

以下是一个:分组、排序然后提取每组中最小和最大值的案例,我们来看一下使用stream和不使用stream的代码实现。

List<Integer> numbers = Arrays.asList(15381026749);  
  
// 分组、排序并提取最小和最大值  
 Map<Boolean, List<Integer>> result = numbers.stream()  
      .collect(Collectors.groupingBy(n -> n % 2 == 0
      // 分组:奇数和偶数  
       Collectors.collectingAndThen(  
                Collectors.toList(), 
                // 收集到列表  
                list -> {  
                     // 对列表进行排序  
                    Collections.sort(list);  
                    // 提取并返回最小和最大值
                    return Lists.newArrayList(list.get(0),list.get(list.size() - 1));  
               }  
)));  

如果我们不使用stream,代码可能是这样的

import java.util.ArrayList;  
import java.util.Arrays;  
import java.util.Collections;  
import java.util.HashMap;  
import java.util.List;  
import java.util.Map;  
  
public class GroupAndSort {  
    public static void main(String[] args) {  
        List<Integer> numbers = Arrays.asList(15381026749);  
  
        Map<Boolean, List<Integer>> result = new HashMap<>();  
        result.put(truenew ArrayList<>()); 
        // 偶数分组  
        result.put(falsenew ArrayList<>()); 
        // 奇数分组  
  
        for (Integer number : numbers) {  
            if (number % 2 == 0) {  
                result.get(true).add(number);  
            } else {  
                result.get(false).add(number);  
            }  
        }  
  
        // 对分组后的列表进行排序  
        Collections.sort(result.get(true));  
        Collections.sort(result.get(false));  
  
        // 提取并设置最小和最大值(注意这里需要使用get(list.size() - 1)来获取最大值)  
        List<Integer> evenResult = result.get(true);  
        if (evenResult.size() > 1) {  
            result.put(true, Arrays.asList(evenResult.get(0), evenResult.get(evenResult.size() - 1)));  
        } else if (evenResult.size() == 1) {  
            result.put(true, Arrays.asList(evenResult.get(0), evenResult.get(0))); 
            // 如果只有一个元素,则最小值和最大值相同  
        } else {  
            result.put(true, Collections.emptyList()); 
            // 如果没有元素,则为空列表  
        }  
  
        List<Integer> oddResult = result.get(false);  
        if (oddResult.size() > 1) {  
            result.put(false, Arrays.asList(oddResult.get(0), oddResult.get(oddResult.size() - 1)));  
        } else if (oddResult.size() == 1) {  
            result.put(false, Arrays.asList(oddResult.get(0), oddResult.get(0))); 
            // 如果只有一个元素,则最小值和最大值相同  
        } else {  
            result.put(false, Collections.emptyList()); 
            // 如果没有元素,则为空列表  
        }   
    }  
}

三、stream流的创建

1. 通过集合创建

调用集合对象的stream()方法来获取一个流

List<String> list = Arrays.asList("a""b""c");  
Stream<String> streamFromList = list.stream();

2. 通过数组创建

使用Arrays.stream()方法从数组创建流,这适用于任何类型的数组。

int[] array = {12345};  
IntStream intStream = Arrays.stream(array);  
 
// 或者对于对象数组  
String[] strArray = {"a""b""c"};  
Stream<String> stringStream = Arrays.stream(strArray);

基本类型的数组,Arrays.stream()会返回特定类型的流,如IntStream、LongStream或DoubleStream。如果需要将这些流转换为通用Stream,你可以使用boxed()方法。

3. 通过Stream的静态方法

Stream类提供了几个静态方法来创建流

Stream<String> stream = Stream.of("a""b""c");

4. 通过随机数生成

Random类可以用于生成随机数,并且你可以使用ints()、longs()或doubles()方法创建一个无限流。但通常会结合limit()方法来限制流的长度。

Random random = new Random();  
IntStream randomIntStream = random.ints(100100);
  // 生成10个0到100之间的随机数

5. 通过文件I/O

在处理文件时,可以使用Files类中的方法,如lines(),从文件中读取行并创建一个流。

Path path = Paths.get("path/to/file.txt");  
Stream<String> linesStream = Files.lines(path);

6. 无限流

Stream API 提供了能够生成无限序列的流

  • Stream.iterate(T seed, UnaryOperatorf): 创建一个无限顺序的流,通过反复应用函数f来生成元素。
  • Stream.generate(Suppliers): 创建一个无限无序的流,其中每个元素由提供的Supplier生成。
// 使用iterate生成一个无限递增的整数流  
Stream<Integer> infiniteIntegerStream = Stream.iterate(0, i -> i + 1);  
 
// 使用generate生成一个无限的随机数流  
Stream<Double> infiniteRandomStream = Stream.generate(Math::random);

7. 通过范围创建

IntStream.range(int startInclusive, int endExclusive): 
LongStream.range(int startInclusive, int endExclusive):

创建一个包含从startInclusive(包含)到endExclusive(不包含)之间的整数的流。

// 创建一个从0(包含)到10(不包含)的整数流  
IntStream intStream = IntStream.range(010);  

无限流应该结合limit()或其他短路操作。

四、Stream流的应用

1. 中间操作

1.1 Filter(过滤)/map(转换)/mapToInt/mapToDouble/mapToLong

filter方法用于过滤流中的元素,而map方法用于对流中的每个元素执行某种操作,并返回一个新的流。

import java.util.Arrays;  
import java.util.List;  
import java.util.stream.Collectors;  
  
public class EmployeeFilterMapDemo {  
    public static void main(String[] args) {  
        // 创建一个员工列表:包含姓名和薪水两个属性  
        List<Employee> employees = Arrays.asList(  
                new Employee("Alice"5500.0),  
                new Employee("Bob"6000.0),  
                new Employee("Charlie"4500.0),  
                new Employee("Diana"5700.0)  
        );  
  
        // 使用Stream API的filter方法过滤出工资超过5000的员工,  
        // 然后使用map方法将每个员工映射成他们的名字,并收集到一个新的列表中  
        List<String> namesOfHighSalaryEmployees = employees.stream()  
                .filter(e -> e.getSalary() > 5000.0)  
                .map(Employee::getName)  
                .collect(Collectors.toList());  
  
        // 打印过滤并映射后的员工名字列表  
        System.out.println("Names of employees with salary > 5000: " + namesOfHighSalaryEmployees);  
    }  
}

此外streamAPI中还有指定类型的map方法:

  • mapToInt(ToIntFunction<? super T> mapper): 将流中的元素转换成int类型。
  • mapToLong(ToLongFunction<? super T> mapper): 将流中的元素转换成long类型。
  • mapToDouble(ToDoubleFunction<? super T> mapper): 将流中的元素转换成double类型。

1.2 flatMap(转换)

flatMap方法在Java Stream API中用于将流中的每个元素转换成一个新的流,然后将这些新生成的流合并成一个单一的流。用于处理流中的集合或数组元素,以将它们“展平”成一个单一的元素流。

一个包含字符串列表的列表使用flatMap将其转换成一个包含所有字符串的单一流:

import java.util.Arrays;  
import java.util.List;  
import java.util.stream.Collectors;  
  
public class FlatMapExample {  
    public static void main(String[] args) {  
        // 创建一个包含列表的列表  
        List<List<String>> listOfLists = Arrays.asList(  
            Arrays.asList("A""B""C"),  
            Arrays.asList("D""E"),  
            Arrays.asList("F""G""H""I")  
        );  
  
        // 使用flatMap将内部列表展平成一个单一列表  
        List<String> flatList = listOfLists.stream()  
            .flatMap(List::stream) // 使用List的stream方法将每个列表转换成流,然后合并  
            .collect(Collectors.toList());  
  
        // 打印结果  
        System.out.println(flatList);  
    }  
}
/// 输出结果将是:
[A, B, C, D, E, F, G, H, I]

1.3 Distinct(去重)

distinct方法用于去除流中的重复元素。基于元素的 equals 和 hashCode 方法来确定哪些元素是重。

import java.util.Arrays;  
import java.util.List;  
import java.util.stream.Collectors;  
  
public class DistinctExample {  
    public static void main(String[] args) {  
        // 创建一个包含重复元素的列表  
        List<Integer> numbers = Arrays.asList(122344551);  
  
        // 使用distinct方法去除重复元素  
        List<Integer> distinctNumbers = numbers.stream()  
            .distinct()  
            .collect(Collectors.toList());  
  
        // 打印结果  
        System.out.println(distinctNumbers);  
    }  
}
// 输出结果将是:

[12345]

1.4 Limit(限制)/Skip(跳过)/Peek(展示)

limit用于限制流中的元素数量,skip用于跳过流中的前N个元素,而peek则允许对流中的每个元素执行某种操作(如打印、修改等)而不改变流本身。peek通常用于调试或查看流中的元素。

import java.util.Arrays;  
import java.util.List;  
import java.util.stream.Collectors;  
  
public class LimitSkipPeekExample {  
    public static void main(String[] args) {  
        // 创建一个整数列表  
        List<Integer> numbers = Arrays.asList(12345678910);  
  
        // 使用peek打印流中的元素,然后使用limit和skip获取特定元素  
        List<Integer> result = numbers.stream()  
                .peek(System.out::println) // 打印每个元素  
                .skip(2)                   // 跳过前两个元素  
                .limit(3)                  // 获取接下来的三个元素  
                .collect(Collectors.toList()); // 收集结果  
  
        // 打印最终结果  
        System.out.println("Result after skip and limit: " + result);  
    }  
}

输出结果将是:

1  
2  
3  
4  
5  
Result after skip and limit: [345]

peek方法虽然执行了操作,但它不会改变流中的元素或流的结构。

1.5 Sorted(排序)

排序可以通过sorted()方法实现,该方法有两种形式:

  • 无参的sorted(),它使用元素的自然顺序进行排序(要求元素实现Comparable接口);
  • 以及接受Comparator参数的sorted(Comparator<? super T> comparator),它允许自定义排序规则。
import java.util.Arrays;  
import java.util.List;  
import java.util.stream.Collectors;  
  
public class SortingExample {  
    public static void main(String[] args) {  
        // 创建一个字符串列表  
        List<String> words = Arrays.asList("banana""apple""cherry""date""elderberry");  
  
        // 使用sorted()方法按自然顺序排序  
        List<String> sortedWords = words.stream()  
                .sorted()  
                .collect(Collectors.toList());  
  
        // 打印排序后的结果  
        System.out.println("Sorted words in natural order: " + sortedWords);  
  
        // 创建一个整数列表  
        List<Integer> numbers = Arrays.asList(52917);  
  
        // 使用sorted()方法和自定义Comparator进行排序  
        List<Integer> sortedNumbers = numbers.stream()  
                .sorted((a, b) -> b - a) // 降序排序  
                .collect(Collectors.toList());  
  
        // 打印排序后的结果  
        System.out.println("Sorted numbers in descending order: " + sortedNumbers);  
    }  
}

输出结果:

Sorted words in natural order: [apple, banana, cherry, date, elderberry]  
Sorted numbers in descending order: [97521]

1.6 concat(两个流连接成一个流)

concat(Stream<? extends T> a, Stream<? extends T> b): 静态方法,用于将两个流连接成一个流。

 // 创建两个整数列表  
List<Integer> list1 = Arrays.asList(123);  
List<Integer> list2 = Arrays.asList(456);  
  
// 将两个列表转换为流,并使用 concat 方法连接它们  
Stream<Integer> concatenatedStream = Stream.concat(list1.stream(), list2.stream());  
// 使用连接后的流进行一些操作,比如打印所有元素  
concatenatedStream.forEach(System.out::println);  

2. 终端操作

2.1  forEach/findFirst/findAny

Stream API中,forEach、findFirst和findAny都是终端操作。forEach用于迭代流中的每个元素并执行一个操作,findFirst用于获取流中的第一个元素,而findAny则用于获取流中的任意元素(并行流特别有用,因为它可能更快)。

import java.util.Arrays;  
import java.util.List;  
import java.util.Optional;  
  
public class StreamMethodsExample {  
    public static void main(String[] args) {  
        // 创建一个整数列表  
        List<Integer> numbers = Arrays.asList(123);  
  
        // 使用forEach打印每个元素  
        numbers.stream()  
                .forEach(System.out::println);  
  
        // 使用findFirst获取第一个元素  
        Optional<Integer> firstNumber = numbers.stream()  
                .findFirst();  
  
        System.out.println("First number: " + firstNumber.orElse(null));  
  
        // 使用findAny获取任意元素  
        Optional<Integer> anyNumber = numbers.stream()  
                .findAny();  
  
        System.out.println("Any number: " + anyNumber.orElse(null));  
    }  
}

输出结果将是流中的每个数字

1  
2  
3  
First number: 1  
Any number: 1

findFirst和findAny返回的是一个Optional对象,这是因为流可能是空的。

2.3 count/sum/max/min

count、sum、max和min都是终端操作,用于对流中的元素进行计数、求和、找最大值和最小值。

// 创建一个整数列表  
List<Integer> numbers = Arrays.asList(12345678910);  
  
// 使用count计算元素数量  
long count = numbers.stream()  
        .count();  
  
System.out.println("Count of elements: " + count);  
  
// 使用sum计算元素总和  
int sum = numbers.stream()  
        .mapToInt(Integer::intValue) // 转换为IntStream以使用sum  
        .sum();  
  
System.out.println("Sum of elements: " + sum);  
  
// 使用max获取最大值  
OptionalDouble max = numbers.stream()  
        .mapToDouble(Integer::doubleValue) // 转换为DoubleStream以使用max  
        .max();  
  
System.out.println("Max value: " + max.orElse(Double.NaN));  
  
// 使用min获取最小值  
OptionalDouble min = numbers.stream()  
        .mapToDouble(Integer::doubleValue) // 转换为DoubleStream以使用min  
        .min();  
  
System.out.println("Min value: " + min.orElse(Double.NaN));  

输出结果:

Count of elements: 10  
Sum of elements: 55  
Max value: 10.0  
Min value: 1.0

2.4 anyMatch/allMatch/noneMatch

anyMatch、allMatch和noneMatch是终端操作,用于检查流中的元素是否满足给定的谓词(条件)。anyMatch检查是否有任何元素满足条件,allMatch检查是否所有元素都满足条件,而noneMatch检查是否没有任何元素满足条件。

// 创建一个整数列表  
List<Integer> numbers = Arrays.asList(12345678910);  
  
// 使用anyMatch检查是否有任何偶数  
boolean hasEven = numbers.stream()  
        .anyMatch(n -> n % 2 == 0);  
  
System.out.println("Has any even number? " + hasEven);  
  
// 使用allMatch检查是否所有数字都小于11  
boolean allLessThan11 = numbers.stream()  
        .allMatch(n -> n < 11);  
  
System.out.println("Are all numbers less than 11? " + allLessThan11);  
  
// 使用noneMatch检查是否没有任何数字等于0  
boolean noZeros = numbers.stream()  
        .noneMatch(n -> n == 0);  
  
System.out.println("Are there no zeros? " + noZeros);  

输出结果:

Has any even number? true  
Are all numbers less than 11true  
Are there no zeros? true

2.5 归约reduce

reduce方法是一个终端操作,用于将流中的所有元素组合成一个单一的结果。它通常用于执行某种累积操作,比如计算元素的总和、乘积或连接字符串等。

  • reduce(T identity, BinaryOperatoraccumulator) 此方法接受一个初始值和一个累积函数,用于归约流中的元素。
  • reduce(BinaryOperatoraccumulator) 此方法不接受初始值,而是使用流中的第一个元素作为初始值,然后应用累积函数。

计算一个员工列表中所有员工的总薪水,同时找出薪水最高的员工。

public class Employee {  
    private String name;  
    private double salary;  
    ... 
}

使用reduce方法来计算总薪水和找出薪水最高的员工:

// 创建一个员工列表  
List<Employee> employees = Arrays.asList(  
        new Employee("Alice"5000.0),  
        new Employee("Bob"6000.0),  
        new Employee("Charlie"5500.0),  
        new Employee("David"6500.0)  
);  
  
// 使用初始值的 reduce 方法来计算所有员工的总薪水 
doubletotalSalary = employees.stream()  
                .reduce(0, (acc, employee) -> acc + employee.getSalary(), Integer::sum); 
System.out.println("Total salary of all employees: " + totalSalary);  
// 不使用初始值的 reduce 方法来连接所有员工的名字  
Optional<String> combinedNames = employees.stream()  
                .map(Employee::getName)  
                .reduce((name1, name2) -> name1 + ", " + name2);    
// 使用reduce找出薪水最高的员工  
Optional<Employee> highestPaidEmployee = employees.stream()  
        .reduce((emp1, emp2) -> emp1.getSalary() > emp2.getSalary() ? emp1 : emp2); 
  
System.out.println("Highest paid employee: " + highestPaidEmployee.orElse(null));  
  
// 或者使用max方法找出薪水最高的员工(更简洁)  
Optional<Employee> highestPaidEmployeeWithMax = employees.stream()  
        .max(Comparator.comparingDouble(Employee::getSalary));  
  
System.out.println("Highest paid employee (using max): " + highestPaidEmployeeWithMax.orElse(null));  

使用max方法和Comparator.comparingDouble来更简洁地找出薪水最高的员工。它更清晰地表达了我们的意图,并且代码更简洁。

输出结果:

Total salary of all employees: 23000.0  
Highest paid employee: Employee{name='David', salary=6500.0}  
Highest paid employee (using max): Employee{name='David', salary=6500.0}

3. 收集操作

3.1 collect收集(三个参数)

collect方法在Java Stream API中通常用于收集流中的元素到某种集合或其他数据结构中。

  • collect(Suppliersupplier, BiConsumer<R, ? super T> accumulator, BiConsumer<R, R> combiner):

重载版本的collect方法提供了更高的灵活性,允许你自定义收集过程。 这个collect方法接受三个参数:

  • Suppliersupplier:一个供应器,用于创建新的结果容器。
  • BiConsumer<R, ? super T> accumulator:一个累加器,用于将流中的元素添加到结果容器中。
  • BiConsumer<R, R> combiner:一个组合器,用于合并两个结果容器(通常用于并行流)。

自定义一个收集过程,将流中的字符串连接成一个单独的字符串:

  // 创建一个字符串流  
Stream<String> stringStream = Stream.of("Hello"" ""World""!"" ""Welcome"" ""to"" ""Java");  
  
// 使用自定义的 collect 方法来连接字符串  
String concatenated = stringStream.collect(  
            // 供应器:创建一个 StringBuilder  
            StringBuilder::new,  
            // 累加器:将每个字符串添加到 StringBuilder  
            StringBuilder::append,  
            // 组合器:将两个 StringBuilder 合并(这里其实不需要,因为我们是顺序处理的,但为了示例完整性还是提供了)  
            (left, right) -> left.append(right)  
        ).toString();  
  
// 输出结果  
System.out.println(concatenated);  

3.1 toList/toMap/toSet/toArray()

toList(), toMap(), 和 toSet() 是非常有用的终端操作,它们可以将流中的元素收集到相应的集合中

List<Employee> employees = Arrays.asList(  
                new Employee("Alice"5000.0),  
                new Employee("Bob"6000.0),  
                new Employee("Charlie"5500.0),  
                new Employee("David"6500.0)  
        );  
  
        // toList  
        List<String> employeeNames = employees.stream()  
                .map(Employee::getName)  
                .collect(Collectors.toList());  
        System.out.println("Employee Names (toList): " + employeeNames);  
  
        // toSet  
        Set<Double> uniqueSalaries = employees.stream()  
                .map(Employee::getSalary)  
                .collect(Collectors.toSet());  
        System.out.println("Unique Salaries (toSet): " + uniqueSalaries);  
  
        // toMap 
        Map<String, Double> employeeSalaries = employees.stream()  
                .collect(Collectors.toMap(  
                        Employee::getName,  
                        Employee::getSalary  
                ));  
        System.out.println("Employee Salaries (toMap): " + employeeSalaries);  

       // 使用 Stream API 将员工列表转换为 Employee[] 数组  
        Person[] employeeArray = employees.stream()  
            .toArray(Employee[]::new); 
    }  

3.3 summing/averaging/summarizing

Collectors 类提供了几个用于数据统计的收集器,如 averagingDouble、summarizingDouble 和 summingDouble。这些收集器通常与流的 collect 方法一起使用,用于对数值流(如员工薪水)进行统计。 Collectors提供了一系列用于数据统计的静态方法: 计数:count 平均值:averagingInt、averagingLong、averagingDouble 最值:maxBy、minBy 求和:summingInt、summingLong、summingDouble 统计以上所有:summarizingInt、summarizingLong、summarizingDouble

List<Employee> employees = Arrays.asList(  
                new Employee("Alice"5000.0),  
                new Employee("Bob"6000.0),  
                new Employee("Charlie"5500.0),  
                new Employee("David"6500.0)  
        );  
  
        // 使用 averagingDouble 计算平均薪水  
        double averageSalary = employees.stream()  
                .collect(Collectors.averagingDouble(Employee::getSalary));  
        System.out.println("Average Salary (averagingDouble): " + averageSalary);  
  
        // 使用 summarizingDouble 获取薪水的统计信息  
        DoubleSummaryStatistics salaryStats = employees.stream()  
                .collect(Collectors.summarizingDouble(Employee::getSalary));  
        System.out.println("Salary Statistics (summarizingDouble): " + salaryStats);  
  
        // 使用 summingDouble 计算薪水总和  
        double sumSalary = employees.stream()  
                .collect(Collectors.summingDouble(Employee::getSalary));  
        System.out.println("Sum of Salaries (summingDouble): " + sumSalary);  
    }  

输出结果:

Average Salary (averagingDouble): 5750.0  
Salary Statistics (summarizingDouble): DoubleSummaryStatistics
{count=4, sum=23000.000000, min=5000.000000, average=5750.000000, max=6500.000000}  
Sum of Salaries (summingDouble): 23000.0

3.4 summaryStatistics()

对于数值流(如 IntStream, LongStream, DoubleStream),summaryStatistics返回描述该流统计信息的对象,如最小值、最大值、平均值等。

// 创建一个包含一些双精度浮点数的数组  
double[] numbers = {1.02.03.04.05.06.07.08.09.010.0};  
  
// 使用 DoubleStream 的 of 方法创建一个流,然后调用 summaryStatistics 方法  
 DoubleSummaryStatistics stats = Arrays.stream(numbers).summaryStatistics();  
  
 // 输出统计信息  
System.out.println("最小值: " + stats.getMin());  
System.out.println("最大值: " + stats.getMax());  
System.out.println("平均值: " + stats.getAverage());  
System.out.println("元素数量: " + stats.getCount());  
System.out.println("元素总和: " + stats.getSum());  

3.6 接合joining

Collectors.joining可以将流中的元素连接成一个字符串。这对将列表、集合或其他流数据结构转换为单个字符串表示形式特别有用。

List<Employee> employees = Arrays.asList(  
                new Employee("Alice"5000.0),  
                new Employee("Bob"6000.0),  
                new Employee("Charlie"5500.0),  
                new Employee("David"6500.0)  
        );  
  
        // 使用 joining 将员工名字连接成一个字符串,逗号分隔  
        String namesJoined = employees.stream()  
                .map(Employee::getName) 
// 提取员工的名字  
                .collect(Collectors.joining(", ")); 
// 使用逗号和空格作为分隔符连接名字  
  
        System.out.println("Employee names joined: " + namesJoined);

输出结果:

Employee names joined: Alice, Bob, Charlie, David

3.7 分组(partitioningBy/groupingBy)

List<Employee> employees = Arrays.asList(  
                new Employee("Alice"5000.0"Development"),  
                new Employee("Bob"6000.0"Management"),  
                new Employee("Charlie"5500.0"Development"),  
                new Employee("David"6500.0"Management"),  
                new Employee("Eve"5200.0"HR")  
        );  
  
        // 使用 partitioningBy 根据薪水是否高于6000进行分区  
        Predicate<Employee> salaryAbove6000 = employee -> employee.getSalary() > 6000;  
        Map<Boolean, List<Employee>> partitionedBySalary = employees.stream()  
                .collect(Collectors.partitioningBy(salaryAbove6000));  
        System.out.println("Employees partitioned by salary > 6000: " + partitionedBySalary);  
  
        // 使用 groupingBy 根据部门进行分组  
        Map<String, List<Employee>> groupedByDepartment = employees.stream()  
                .collect(Collectors.groupingBy(Employee::getDepartment));  
        System.out.println("Employees grouped by department: " + groupedByDepartment);  
    }  
  • Collectors.partitioningBy 方法用于根据提供的谓词(Predicate)对流中的元素进行分区。
  • Collectors.groupingBy 方法用于根据提供的分类函数对流中的元素进行分组。在这个例子中,分类函数是 Employee::getDepartment,它根据员工的部门对员工进行分组。结果是一个映射,其中键是部门名称,值是对应部门的员工列表。

4 其他操作:sequential(顺序流)/parallel(并行流)

parallel和sequential是用来指定流的执行模式的方法。这两种模式决定了流中的元素是如何被处理的。

4.1parallel(并行流,基于ForkJoinPool)

调用parallelStream()或者对一个已经存在的流调用parallel()时,这个流以并行方式执行操作。并行流会尝试利用多个线程来同时处理多个元素,以提高处理速度。并行流是基于Java的ForkJoinPool实现的,它是一个特殊的线程池,适合执行可以并行处理的任务。

4.2sequential(顺序流)

对一个流调用sequential()时,这个流以顺序方式执行操作。顺序流中的元素按照它们在数据源中出现的顺序逐个进行处理。顺序流是在单个线程中执行的,因此不存在线程安全问题。

List<Integer> numbers = Arrays.asList(12345678910);  
  
 // 使用顺序流  
System.out.println("Sequential Stream:");  
numbers.stream()  
           .sequential() // 默认就是顺序流,这里显式指定  
           .forEach(n -> {  
               System.out.print(n + " ");  
               try {  
                   Thread.sleep(100);
// 耗时操作  
               } catch (InterruptedException e) {  
                   e.printStackTrace();  
               }  
           });  
System.out.println("\n");  
  
// 使用并行流  
System.out.println("Parallel Stream:");  
numbers.stream()  
           .parallel()  
           .forEach(n -> {  
               System.out.print(n + " ");  
               try {  
                   Thread.sleep(100); 
// 耗时操作  
               } catch (InterruptedException e) {  
                   e.printStackTrace();  
               }  
           });  
System.out.println("\n");  

顺序流的可能输出(每次运行都应该相同):

Sequential Stream:  
1 2 3 4 5 6 7 8 9 10

并行流的可能输出(每次运行都可能不同):

Parallel Stream:  
4 2 6 8 1 3 9 5 7 10

不应该在forEach操作中执行有副作用的操作(比如修改共享变量),因为并行流不保证操作的顺序性。如果需要收集结果或者执行有状态的操作,应该使用像collect这样的终端操作来代替。

太强 ! SpringBoot中出入参增强的5种方法 : 加解密、脱敏、格式转换、时间时区处理

太强 ! SpringBoot中优化if-else语句的七种绝佳方法实战

SpringBoot使用EasyExcel并行导出多个excel文件并压缩zip下载
提升编程效率的利器: Google Guava库中双向映射BitMap
从MySQL行格式原理看:为什么开发规范中不推荐NULL?数据是如何在磁盘上存储的?
SpringBoot中使用Jackson实现自定义序列化和反序列化控制的5种方式总结
提升编程效率的利器: Google Guava库之RateLimiter优雅限流
深入JVM逃逸分析原理:且看其如何提高程序性能和内存利用率
必知必会!MySQL索引下推:原理与实战

深入解析JVM内存分配优化技术:TLAB

SpringBoot中基于JWT的双token(access_token+refresh_token)授权和续期方案
SpringBoot中基于JWT的单token授权和续期方案
SpringBoot中Token登录授权、续期和主动终止的方案(Redis+Token)
微服务中token鉴权设计的4种方式总结
提升编程效率的API利器:精通Google Guava库区间范围映射RangeMap
SpringBoot中Jackson控制序列化和反序列化的注解和扩展点总结【收藏版】

SpringBoot中大量数据导出方案:使用EasyExcel并行导出多个excel文件并压缩zip后下载

SpringBoot中基于XXL-JOB实现大量数据灵活控制的分片处理方案

关注『 码到三十五 』,日有所获
                     点赞 和 在看 就是最大的支持

码到三十五
主要分享正经的开发技术(原理,架构,实践,源码等),以输出驱动输入;当然偶尔会穿插点生活琐碎,顺便吃个瓜,目的嘛,搞点精准流量,看能不能发发广告。
 最新文章