广州国际智能计算机、算法和应用大会(12月4-6)征文

文摘   2024-07-01 10:40   北京  
    国际智能计算机、算法和应用大会(IC)是一个跨学科的人工智能国际会议,涵盖处理器、系统、算法和应用等主题。IC 2024秉承传统,肩负着两个重要使命。首先,它强调应用尖端人工智能技术如机器学习、深度学习、脉冲神经网络等解决多学科和跨学科实际问题。其次,严格依据BenchCouncil科学技术评价学,在世界范围内遴选Top 500 AI成果,会议将提供一份创新的技术路线图,推动各个领域的创新和进步。


重要日期和地点


截稿日期: 2024年8月6日 20点(北京时间)

通知日期: 2024年10月1日 20点(北京时间)

终稿日期: 2024年11月1日 20点(北京时间)

会议日期: 2024年12月4-6日

会议地点: 广东广州·华工大学城中心酒店

提交网址: https://ic2024.hotcrp.com/




大会亮点


严格依据BenchCouncil科学技术评价学

(1)颁发BenchCouncil AI成就大奖和BenchCoucil China杰出青年学者奖(限10人)。

(2)通过Top 500计划在全球范围内遴选500个系统、算法、应用项目,并邀请团队代表在现场报告、展示。


(3)论文双盲评审,全英文投稿。会议论文集由Springer Nature(待定,CCIS,EI索引)出版。优秀论文扩展版邀请在TBench期刊发表

(4)国际测试基准与标准大会(Bench 2024)联合举办(12月4日-6日)




会议简介





IC 2024遵循已经建立的传统,负有两个重要使命。首先,强调在多学科和跨学科领域中应用最先进的机器学习、深度学习、脉冲神经网络和其他人工智能技术。IC 2024着重于先进人工智能技术实际应用,在理论进展和实际应用之间架起桥梁。


其次,IC 2024利用Top500计划提供先导性的技术路线图。通过探索和推进处理器、系统、算法和应用领域中的机器学习、深度学习、脉冲神经网络和其他人工智能技术的最新进展和最佳实践。该会议促进创新并推动各个领域的进步。这种全面的方法确保IC 2024处于技术进展的前沿,使参与者能够获得有关人工智能领域的最新发展的宝贵见解。


IC 2024欢迎提交原创研究论文,涵盖上述领域。该会议还邀请来自世界各地的贡献者展示他们出色的芯片、系统、算法和应用。这种包容性的方法促进了研究人员和从业人员之间的合作和知识共享,使他们能够交流思想并探索人工智能领域的新可能性。


IC 2024接受的论文将在会议上进行展示,并由Springer Nature出版(待定,CCIS, EI索引)。已发表的IC会议论文https://link.springer.com/book/10.1007/978-981-16-1160-5 https://link.springer.com/book/10.1007/978-981-97-0065-3



会议网址:https://www.benchcouncil.org/ic2024/

长按识别下方二维码访问IC 2024官网





论文征稿


IC会议涵盖了智能计算机、算法及在计算机科学、民航、医疗、金融、教育、管理等领域的广泛主题。主题包括但不限于以下内容。

AI Algorithms

△Machine learning (deep learning, statistical learning, etc)

△Natural language processing

△Computer vision

△Data mining

△Multiagent systems

△Knowledge representation

△Robotics

△Search, planning, and reasoning

Security and Privacy of AI

△Fairness, interpretability, and explainability for AI

△AI Regulations

△Adversarial learning

△Membership inference attacks

△Data poisoning & backdoor attacks

△Security of deep learning systems

△Robust statistics

△Differential privacy & privacy-preserving data mining

AI for security and privacy

△Computer forensics

△Spam detection

△Phishing detection and prevention

△Botnet detection

△Intrusion detection and response

△Malware identification and analysis

△Intelligent vulnerability fuzzing

△Automatic security policy management & evaluation

△Big data analytics for security

AI for Civil Aviation

△AI in Aircraft Maintenance, Repair and Overhaul (MRO)

△AI in Operations Management and Revenue Optimization against safety control

△AI in Customer Service and Engagement

△AI in Aircraft Design Optimization

△AI in Identification of Passengers

△Pitfalls of using AI in Aviation

△The integrity, Metadata integration architecture, effectiveness, consistency, standardization, openness and sharing management of the civil aviation data

△Digital Business of civil aviation, quality management of Civil Aviation data

△Digital Air-Control Management and Digital Surveillance Management of Civil Aviation

AI for Education

△Position papers on AI for education

△Large language models for education

△AI models of teaching and learning

△AI-assisted education

△Innovative applications of AI technologies in education

△Evaluation of AI technologies in education

△Intelligent tutoring systems

△Human-computer collaborative education systems

△Ethics and AI in education

△Impacts of AI technologies on education

AI for High Energy Physics

△Machine learning methods or models for HEP, including event triggering, particle identification, fast simulation, event reconstruction, noise filtering, detector monitoring, and experimental control.

△Utilizing high-performance computing for implementing machine learning methods in HEP, such as feature detection, feature engineering, usability, interpretability, robustness, and uncertainty quantification.

△Optimizing machine learning models on large-scale HEP simulation or experimental datasets

△Deepening the modeling and simulation of HEP scientific problems using machine learning techniques.

△Harnessing emerging hardware (e.g., GPUs, NPUs, FPGAs) to accelerate machine learning processes for HEP data

△Applications of large-scale language models in machine learning for HEP

△Applications of quantum machine learning in machine learning for HEP.

AI for Law

△Argument mining on legal texts

△Automatic classification and summarization of legal text

△Computational methods for negotiation and contract formation

△Computer-assisted dispute resolution

△Computable representations of legal rules and domain-specific languages for the law

△Decision support systems in the legal domain

△Deep learning on data and text from the legal domain

△E-discovery, e-disclosure, e-government, e-democracy and e-justice

△Ethical, legal, fairness, accountability, and transparency subjects arising from the use of AI systems in legal practice, access to justice, compliance, and public administration

△Explainable AI for legal practice, data, and text analytics

△Formal and computational models of legal reasoning (e.g., argumentation, case-based reasoning), including deontic logics)

△Formal and computational models of evidential reasoning

△Formal models of norms and norm-governed systems

△Information extraction from legal databases and texts

△Information retrieval, question answering, and literature recommendation in the legal domain

△Intelligent support systems for forensics

△Interdisciplinary applications of legal informatics methods and systems

△Knowledge representation, knowledge engineering, and ontologies in the legal domain

△Legal design involving AI techniques

△Machine learning and data analytics applied to the legal domain

△Normative reasoning by autonomous agents

△Open and linked data in the legal domain

△Smart contracts and application of blockchain in the legal domain

△Visualization techniques for legal information and data

AI for Materials Science and Engineering

△AI for materials design

△AI for property prediction

AI for Medicine

△Medical AI and Interpretable Medical Models

△AI, Block Chain, Cloud, and Data Techniques for Medicine

△Big Medical Data and Privacy Protection

△Artificial Intelligence and Medical Image Analysis

△Internet-based Medical Diagnosis

△Medical Robot

△Drug discovery and Computer-aided Design

△Artificial Intelligence in Medical Diagnosis

△Medical Data and AI Practice and Case Study

AI for Ocean Science and Engineering

△Ocean Front Detection

△Mesoscale Eddy Recognition

△Underwater Image Enhancement

△Underwater Image Super-Resolution

△Underwater Object Recognition, Detection and Tracking

△Sea Surface Height Estimation

△Sea Surface Temperature Estimation

△Internal Wave Identification

△Wave Height Estimation

AI for Science

Learning from acoustics

Learning physical dynamics from data

Speeding up physical simulators, samplers, and solvers

Molecular modeling and de novo generation

Modeling biological systems, genomics, protein, RNA

Accelerating cosmological simulations

Improving crop yields through precision agriculture

Optimizing aerospace product design and development

Benchmarking related or new tasks (i.e. datasets, sota models, etc.)

Building tools/infrastructures/platforms for scientific discovery

Study of science of science/scientific methods

AI for Space Science and Engineering

△Space science target prediction, detection, and feature extraction based on AI technology

△Uncertain analysis of AI models in space science

△Physics-informed machine learning in space science

△AI surrogate of the physics models

How to gain new knowledge from the space science AI models

△Foundation models in space science

△Use AI technology to assist in space mission planning and scheduling

△AI-assisted space satellite anomaly detection and emergency decision-making

AI in Finance

Applications of AI in finance: such as capital markets, investment and financing in the real economy, risk management, investment decision-making, transaction execution, etc.

Impact of AI on the financial industry: Discuss the influence of AI on the financial industry, such as improving efficiency, reducing risks, and optimizing customer experience.

Challenges and opportunities for AI: Explore the technical, ethical, regulatory, and other challenges faced by AI in the financial field and how to overcome them.

Sustainable development of intelligent finance: explore how to promote the development of the finance industry with extensive AI application while maintaining the principles of sustainable development.

Ethics and transparency: explore the ethical and transparency issues raised by AI in the financial field.

AI Systems

△Scalable and distributed AI systems

△High-performance computing for AI

△System-level optimization for deep learning

△Efficient hardware architectures for AI

△Model compression and acceleration techniques

△Memory management and resource allocation in AI systems

△Real-time and edge AI systems

△AutoML and automated system design

△Benchmarking and evaluation of AI systems

△Observability of AI systems

△Edge computing for AI systems

△Reliability of AI systems

△GPU sharing

△Intelligent Operations of AI systems

△Graph computing systems

△Domain-specific AI systems

△Serverless architecture for AI systems




论文提交


Springer LNCS 格式,full paper限15页(不包括参考文献),short paper限8页(不包括参考文献)。也鼓励提交4页的摘要,接受后进行扩展。

双盲评审(采用HotCRP投稿系统)。论文审稿强调研究的价值,而非论文页数。

论文经录用后,至少一名作者注册会议并进行报告,未注册的论文将无法发表。


请确保论文提交版本符合以下所有条件: 

• 所有作者和附属信息必须匿名。

• 论文必须为可打印的 PDF 格式。

• 论文包含页码编号。

• 论文支持黑白打印,确保论文图表使用黑白打印之后的可读性。

• 论文必须描述未在其他刊物上发表,且未在其他会议或期刊评审中的工作。

• 参考文献必须包括所有作者(例如,不要使用et al.)。


LNCS latex template: https://www.benchcouncil.org/file/llncs2e.zip



组织结构


大会主席

  • Jianfeng Zhan, International Open Benchmark Council


程序委员会共同主席

  • Weiping Li, Oklahoma State University, USA

  • Chunjie Luo, Institute of Computing Technology, Chinese Academy of Sciences, China


宣传委员会主席

  • Shaopeng Dai, Institute of Computing Technology, Chinese Academic of Science, China


宣传委员会副主席

  • Han Yin, East China University of Political Science and Law, China

  • Yicheng Liao, Guanghua Law School, Zhejiang University, China


技术程序委员会成员

  • Bin Wang, Nankai University, China

  • Biwei Xie, Institute of Computing Technology, Chinese Academic of Science, China

  • Dexin Zhou, CUNY Baruch College, USA

  • Diego Oliva, University of Guadalajara, Mexico

  • Duohe Ma, State Key Laboratory of Information Security, Institute of Information Engineering, CAS, China

  • Fuwei Jiang, Central University of Finance and Economics, China

  • Wanlin Gao, Institute of Computing Technology, Chinese Academy of Sciences, China

  • Guihua Shan, Computer Network Information Center, Chinese Academy of Sciences, China

  • Haoyu Gao, Renmin University of China, China

  • Hongjia Li, Chinese academy of sciences, China

  • Pengfei Zheng, Huawei, China

  • Sadegh Nobari, Chief Information Officer, Startbahn, Japan

  • Shiyang Yu, Nankai University, China

  • Weile Jia, Institute of Computing Technology, Chinese Academy of Sciences, China

  • Wing Chiu, Department of Mechanical and Aerospace Engineering, Monash University, Australia

  • Xinchou Lou, University of Texas at Dallas, Dallas & Institute of High Energy Physics (IHEP), China

  • Xuesong Lu, School of Data Science and Engineering, East China Normal University, China

  • Yanni Han, Institute of Information Engineering, Chinese Academy of Sciences, China

  • Yanwei Liu, Institute of Information Engineering, Chinese Academy of Sciences, China

  • Yifeng Zhu, Central University of Finance and Economics, China

  • Yingjie Shi, Beijing Institute of Fashion Technology, China

  • Yushan Su, Princeton University, USA

  • Zhen Jia, Amazon, USA

  • Lei Wang, Institute of Computing Technology, Chinese Academy of Sciences, China

  • Zheng Yuan, King's College London, United Kingdom

  • Zhigang Qiu, Renmin University of China, China

  • Yue Liu, Shanghai University, China

  • Shengzhong Feng, Guangdong Institute of Intelligence Science and Technology, China

  • Pengfei Chen,  Sun YAT-SEN University, China

  • Liqiu Yang, University  of Southern California, USA

  • Pengfei Wang, Computer Network Information Center, Chinese Academy of Sciences, China

  • Yunyou Huang, Guangxi Normal University, China

  • Wei Wang, East China Normal University, China

  • Fanda Fan, Institute of Computing Technology, Chinese Academy of Sciences, China

  • Guoqiang Zhong, Ocean University of China, China

  • Ruixuan Wang, Sun YAT-SEN University, China

  • Yuhui Deng, Jinan University, China

  • Lanju Kong, Shandong University, China

  • Saiqin Long, Jinan University, China

  • Yong Tang, South China Normal University, China

  • Chunying Li, Guangdong Polytechnic Normal University, China

  • Jing Qiu, Guangzhou University, China

  • Lin Cui, Jinan University, China

  • Kai Wu, South China University of Technology, China

  • Chunhua Xiao, Chongqing University, China

  • Yanwu Yang, Huazhong University of Science and Technology, China

  • Xu Chen, Sun YAT-SEN University, China

  • Jialiang Tan, Lehigh University, USA

  • Hui Sun, Anhui University, China

  • Jiaquan Gao, Nanjing Normal University, China

  • Fuwei Jiang, Central University of Finance and Economics, China

  • Lu Leng, Nanchang Hangkong University, China

  • Yongjun Xu, Institute of Computing Technology, Chinese Academy of Sciences, China

  • Zhihui Lu, Fudan University, China

  • Lei Wang, Institute of Physics, Chinese Academy of Sciences, China

  • Weihe Gao, Shanghai University of Finance and Economics, China

  • Ye Li, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

  • Cheng Qian, Guangdong Institute of Intelligence Science and Technology, China

  • Kejiang Ye, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

  • Yuxin Ding, Harbin Institute of Technology, Shenzhen, China

  • Di Zhao, Institute of Computing Technology, Chinese Academy of Sciences, China

  • Dejin Yang, Beijing Jishuitan Hospital, China

  • Yi Wang, Shenzhen University, China

  • Jianwu Wang, University of Maryland, Baltimore County, USA

  • Miao Wang, Academy of Military Sciences, PLA, China

  • Chengwen Zhang, Beijing University of Posts and Telecommunications, China

  • Guan Gui, Nanjing University of Posts and Telecommunications, China

  • Di Hou, Xian Jiaotong University, China

  • Linping Wu, China Academy of Engineering Physics, China

  • Wen Xiong, Yunnan Normal University, China

  • Jungang Xu, University of Chinese Academy of Sciences, China

  • Bibo Tu, Institute of Information Engineering, Chinese Academy of Sciences, China

  • Wenzhong Wang, Anhui University, China

  • Kun Yang, National Institute of Metrology of China, China 

  • Zhibin Yu, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

  • Bin Wang, Northeastern University, China

  • Weixiang Liu, Shenzhen University, China

  • Yi Jin, Beijing Computing Center, China

  • Congfeng Jiang, Hangzhou Dianzi University, China

  • Yu Wen, Institute of Information Engineering, Chinese Academy of Sciences, China

  • Yinliang Yue, Zhongguancun Laboratory, China

  • Yong Xia, Northwestern Polytechnical University, China

  • Li Gao, University of Shanghai for Science and Technology, China

  • Hongliang Liang, Beijing University of Posts and Telecommunications, China

  • Zhihong Tian, Guangzhou University, China

  • Li Xiao, Beijing University of Posts and Telecommunications, China

  • Wenyao Zhang, Beijing Institute of Technology, China

  • Xiaolan Xie, Guilin University of Technology, China

  • Di Zhang, Xian Jiaotong-Liverpool University, China

  • Yanwu Xu, South China University of Technology, China

  • Yanjie Wei, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

  • Zili Zhang, Southwest University, China

  • Jian Wu, Anqing Normal University, China

  • Luntian Mou, Beijing University of Technology, China

  • Xiangdong Wang, Institute of Computing Technology, Chinese Academy of Sciences, China

  • Weiqin Tong, Shanghai University, China

  • Li Wang, Taiyuan University of Technology, China

  • Xiaoyong Tang, Changsha University of Science & Technology, China

  • Xiangwen Liao, Fuzhou University, China

  • Huaxi Gu, Xidian University, China

  • Zhujie Ren, Zhejiang Laboratory, China

  • Juan Fang, Beijing University of Technology, China

  • Xianjin Fang Anhui University of Science and Technology, China

  • Dan Huang, Sun YAT-SEN University, China

  • Zitao Liu, Jinan University, China

  • Peng Bao, Beijing Jiaotong University, China

  • Lingjun Fan, Guiyang Big Data Industry Group, China

  • Weijun Sun, Guangdong University of Technology, China

  • Yongkai Fan, Communication University of China, China

  • Shinan Cao, University of International Business and Economics, China

  • Hideyuki Takahashi, Tohoku Gakuin University, Japan


BenchCouncil
国际测试委员会(BenchCouncil)是评价科学与工程理论的首倡者
 最新文章