Python爬虫必备的8大技巧,收藏!

科技   2024-11-06 08:50   湖北  

想要快速学习爬虫,最值得学习的语言一定是Python,Python应用场景比较多,比如:Web快速开发、爬虫、自动化运维等等,可以做简单网站、自动发帖脚本、收发邮件脚本、简单验证码识别脚本。

爬虫在开发过程中也有很多复用的过程,今天就总结一下必备的8大技巧,以后也能省时省力,高效完成任务。


1

基本抓取网页


get方法

import urllib2
url = "http://www.baidu.com"response = urllib2.urlopen(url)print response.read()


post方法

import urllibimport urllib2
url = "http://abcde.com"form = {'name':'abc','password':'1234'}form_data = urllib.urlencode(form)request = urllib2.Request(url,form_data)response = urllib2.urlopen(request)print response.read()


2

使用代理IP


在开发爬虫过程中经常会遇到IP被封掉的情况,这时就需要用到代理IP;在urllib2包中有ProxyHandler类,通过此类可以设置代理访问网页,如下代码片段:

import urllib2
proxy = urllib2.ProxyHandler({'http': '127.0.0.1:8087'})opener = urllib2.build_opener(proxy)urllib2.install_opener(opener)response = urllib2.urlopen('http://www.baidu.com')print response.read()


3

Cookies处理


cookies是某些网站为了辨别用户身份、进行session跟踪而储存在用户本地终端上的数据(通常经过加密),python提供了cookielib模块用于处理cookies,cookielib模块的主要作用是提供可存储cookie的对象,以便于与urllib2模块配合使用来访问Internet资源。


代码片段:

import urllib2, cookielibcookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())opener = urllib2.build_opener(cookie_support)urllib2.install_opener(opener)content = urllib2.urlopen('http://XXXX').read()

关键在于CookieJar(),它用于管理HTTP cookie值、存储HTTP请求生成的cookie、向传出的HTTP请求添加cookie的对象。整个cookie都存储在内存中,对CookieJar实例进行垃圾回收后cookie也将丢失,所有过程都不需要单独去操作。


手动添加cookie:

cookie = "PHPSESSID=91rurfqm2329bopnosfu4fvmu7; kmsign=55d2c12c9b1e3; KMUID=b6Ejc1XSwPq9o756AxnBAg="request.add_header("Cookie", cookie)


4

伪装成浏览器


某些网站反感爬虫的到访,于是对爬虫一律拒绝请求。所以用urllib2直接访问网站经常会出现HTTP Error 403: Forbidden的情况。


对有些 header 要特别留意,Server 端会针对这些 header 做检查:

  • User-Agent 有些 Server 或 Proxy 会检查该值,用来判断是否是浏览器发起的 Request

  • Content-Type 在使用 REST 接口时,Server 会检查该值,用来确定 HTTP Body 中的内容该怎样解析


这时可以通过修改http包中的header来实现,代码片段如下:

import urllib2headers = {    'User-Agent':'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6'}request = urllib2.Request(    url = 'http://my.oschina.net/jhao104/blog?catalog=3463517',    headers = headers)print urllib2.urlopen(request).read()


5

页面解析


对于页面解析最强大的当然是正则表达式,这个对于不同网站不同的使用者都不一样,就不用过多的说明

其次就是解析库了,常用的有两个lxml和BeautifulSoup

对于这两个库,我的评价是,都是HTML/XML的处理库,Beautifulsoup纯python实现,效率低,但是功能实用,比如能用通过结果搜索获得某个HTML节点的源码;lxml C语言编码,高效,支持Xpath。


6

验证码的处理

对于一些简单的验证码,可以进行简单的识别。本人也只进行过一些简单的验证码识别。但是有些反人类的验证码,比如12306,可以通过打码平台进行人工打码,当然这是要付费的。


7

gzip压缩


有没有遇到过某些网页,不论怎么转码都是一团乱码。哈哈,那说明你还不知道许多web服务具有发送压缩数据的能力,这可以将网络线路上传输的大量数据消减 60%以上。这尤其适用于XML web 服务,因为 XML 数据 的压缩率可以很高。


但是一般服务器不会为你发送压缩数据,除非你告诉服务器你可以处理压缩数据。


于是需要这样修改代码:

import urllib2, httplibrequest = urllib2.Request('http://xxxx.com')request.add_header('Accept-encoding', 'gzip')opener = urllib2.build_opener()f = opener.open(request)


这是关键:创建Request对象,添加一个 Accept-encoding 头信息告诉服务器你能接受 gzip 压缩数据。


然后就是解压缩数据:

import StringIOimport gzip
compresseddata = f.read()compressedstream = StringIO.StringIO(compresseddata)gzipper = gzip.GzipFile(fileobj=compressedstream)print gzipper.read()


8

多线程并发抓取


单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发的。


虽然说Python的多线程很鸡肋,但是对于爬虫这种网络频繁型,还是能一定程度提高效率的。


from threading import Threadfrom Queue import Queuefrom time import sleep# q是任务队列#NUM是并发线程总数#JOBS是有多少任务q = Queue()NUM = 2JOBS = 10#具体的处理函数,负责处理单个任务def do_somthing_using(arguments):    print arguments#这个是工作进程,负责不断从队列取数据并处理def working():    while True:        arguments = q.get()        do_somthing_using(arguments)        sleep(1)        q.task_done()#fork NUM个线程等待队列for i in range(NUM):    t = Thread(target=working)    t.setDaemon(True)    t.start()#把JOBS排入队列for i in range(JOBS):    q.put(i)#等待所有JOBS完成q.join()

如果觉得有用,就请关注点赞在看分享到朋友圈吧!

推荐阅读:

  1. 重磅发布!2024年全栈测试开发实战指南(第5期),技能进阶必备!

  2. 重磅消息 | 2023年最新全栈测试开发技能实战指南V2.0(第4期)

  3. 说透性能测试:为什么每个测试人都要学好性能测试?

  4. 2024年,重磅发布!自动化测试全攻略,从入门到精通!

  5. 自动化测试全攻略:从入门到精通!

END

所有原创文章
第一时间发布至此公众号「测试开发技术」

长按二维码/微信扫码  添加作者

测试开发技术
专注于软件测试开发领域: 开源技术、工具/框架/平台、自动化测试、性能测试、安全测试、数据爬虫、Python、CI/CD、DevOps、职场成长分享。
 最新文章