推荐一个Python可视化模块,简单又好用!

科技   2024-11-14 09:00   中国香港  

来源:网络

数据可视化动画还在用Excel做?

现在一个简单的Python包就能分分钟搞定!

而且生成的动画也足够丝滑,效果是酱紫的:

这是一位专攻Python语言的程序员开发的安装包,名叫Pynimate

目前可以直接通过PyPI安装使用。

使用指南

想要使用Pynimate,直接import一下就行。

import pynimate as nim

输入数据后,Pynimate将使用函数Barplot()来创建条形数据动画。

而创建这种动画,输入的数据必须是pandas数据结构(如下),其中将时间列设置为索引,换句话说索引代表的是自变量。

time, col1, col2, col3
2012   1     2     1
2013   1     1     2
2014   2     1.5   3
2015   2.5   2     3.5

具体的代码形式如下:

import pandas as pd
df = pd.read_csv('data'csv').set_index('time')

比如要处理具体的数据,写成代码应该是这样子的。

df = pd.DataFrame(
    {
        "time": ["1960-01-01""1961-01-01""1962-01-01"],
        "Afghanistan": [1, 2, 3],
        "Angola": [2, 3, 4],
        "Albania": [1, 2, 5],
        "USA": [5, 3, 4],
        "Argentina": [1, 4, 5],
    }
).set_index("time")

此外,要制作条形数据动画,Barplot还有三个必需的参数得注意:datatime_formatip_freq(Interpolation frequency)。

data就是表格的数据,这里也就不再赘述。

time_format是指数据索引的时间日期格式,一般为:”%Y-%m-%d”。

最后是ip_freq,它是制作动画中比较关键的一步,通过线性插值使动画更加流畅丝滑。

一般来说,并不是所有的原始数据都适合做成动画,现在一个典型的视频是24fps,即每秒有24帧。

举个栗子🌰,下面这个表格中的数据只有三个时间点,按理说只能生成3帧视频,最终动画也只有3/24秒。

time, col1, col2
2012   1     3  
2013   2     2   
2014   3     1

这时候,ip_freq插值(线性)就开始发挥作用了,如果插值是一个季度,则得出的数据就变成了这样:

time     col1  col2
2012-01-01  1.00  3.00
2012-04-01  1.25  2.75
2012-07-01  1.50  2.50
2012-10-01  1.75  2.25
2013-01-01  2.00  2.00
2013-04-01  2.25  1.75
2013-07-01  2.50  1.50
2013-10-01  2.75  1.25
2014-01-01  3.00  1.00

具体的插值时间间隔为多久,则要视具体的数据而定,一般绘制大数据时,设置为ip_freq = None

至此,就能生成数据动画了,完整代码如下所示:

from matplotlib import pyplot as plt
import pandas as pd
import pynimate as nim

df = pd.DataFrame(
    {
        "time": ["1960-01-01""1961-01-01""1962-01-01"],
        "Afghanistan": [1, 2, 3],
        "Angola": [2, 3, 4],
        "Albania": [1, 2, 5],
        "USA": [5, 3, 4],
        "Argentina": [1, 4, 5],
    }
).set_index("time")

cnv = nim.Canvas()
bar = nim.Barplot(df, "%Y-%m-%d""2d")
bar.set_time(callback=lambda i, datafier: datafier.data.index[i].year)
cnv.add_plot(bar)
cnv.animate()
plt.show()

这是插值为两天,生成的动画效果。

最后还有一个问题,那就是保存动画,有两个格式可以选择:gif或者mp4。

保存为动图一般使用:

cnv.save("file", 24, "gif")

若要保存为mp4的话,ffmpeg是个不错的选择,它是保存为mp4的标准编写器。

pip install ffmpeg-python

或者

conda install ffmpeg

当然,同样也可以使用Canvas.save()来保存。

cnv.save("file", 24 ,"mp4")

关注【测试开发技术】,添加"星标",获取每天技术干货,共同成长!

推荐阅读:

  1. 重磅发布!2024年全栈测试开发实战指南(第5期),技能进阶必备!

  2. 2024年,重磅发布!自动化测试全攻略,从入门到精通!

  3. 自动化测试全攻略:从入门到精通!

END

所有原创文章
第一时间发布至此公众号「测试开发技术」

长按二维码/微信扫码  添加作者

点赞在看就是最大的支持❤️

测试开发技术
专注于软件测试开发领域: 开源技术、工具/框架/平台、自动化测试、性能测试、安全测试、数据爬虫、Python、CI/CD、DevOps、职场成长分享。
 最新文章