RS DL
介绍
任务概述:Sentinel-1C继承了Sentinel-1系列的传统,为气候变化、灾害应对和海洋交通监测等多领域提供高分辨率雷达图像,恢复了与Sentinel-1A组成的双卫星星座的完整能力。 技术特点:Sentinel-1C配备C波段合成孔径雷达(SAR),能够全天候获取地表影像。它引入了自动识别系统(AIS),用于精确追踪船舶位置,加强海洋监测。 发射成功:火箭于欧洲中部时间22:20发射,00:04完成卫星入轨,ESA在00:12确认与卫星建立通信。
// Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.
var sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD')
.filterDate('2020-06-01', '2020-10-01');
// Filter the Sentinel-1 collection by metadata properties.
var vvVhIw = sentinel1
// Filter to get images with VV and VH dual polarization.
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))
// Filter to get images collected in interferometric wide swath mode.
.filter(ee.Filter.eq('instrumentMode', 'IW'));
// Separate ascending and descending orbit images into distinct collections.
var vvVhIwAsc = vvVhIw.filter(
ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));
var vvVhIwDesc = vvVhIw.filter(
ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));
// Calculate temporal means for various observations to use for visualization.
// Mean VH ascending.
var vhIwAscMean = vvVhIwAsc.select('VH').mean();
// Mean VH descending.
var vhIwDescMean = vvVhIwDesc.select('VH').mean();
// Mean VV for combined ascending and descending image collections.
var vvIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VV').mean();
// Mean VH for combined ascending and descending image collections.
var vhIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VH').mean();
// Display the temporal means for various observations, compare them.
Map.addLayer(vvIwAscDescMean, {min: -12, max: -4}, 'vvIwAscDescMean');
Map.addLayer(vhIwAscDescMean, {min: -18, max: -10}, 'vhIwAscDescMean');
Map.addLayer(vhIwAscMean, {min: -18, max: -10}, 'vhIwAscMean');
Map.addLayer(vhIwDescMean, {min: -18, max: -10}, 'vhIwDescMean');
Map.setCenter(-73.8719, 4.512, 9); // Bogota, Colombia
因配置了AI回复功能,除关键词自动回复外,号内信息主要由AI大模型回复。如需资源、投稿、合作等,请直接联系小助手微信(添加请备注:咨询、投稿、合作、加群,加群需备注姓名/昵称,单位和研究方向)。
公众号欢迎优秀作者投稿!可加入优秀论文作者群:欢迎加入AI遥感优秀论文作者群!
问题及讨论可直接在文章下方留言
欢迎关注
分享遥感与深度学习领域的技术、论文、书籍、新鲜事。
欢迎加入遥感与深度学习交流群(点此加入)。