论文新思路!双通道卷积!GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的分类/故障识别程序!直接运行

文摘   教育   2024-12-27 09:06   江苏  
适用平台:Matlab2023版本及以上

本程序参考中文EI期刊《电力自动化设备》12月29号网络首发文献:《基于格拉姆角场与并行CNN的并网逆变器开关管健康诊断》,此外,在此基础上进一步对模型进行复现改进该论文推出时间短,复现及改进还没有人应用到其他研究方向,如轴承、变压器、电能质量等方向,这种并行结构区别与传统的搭积木式结构,极易录

文献解读:这篇文献中,首先,采集一维故障电压与电流信号的时序序列;其次,利用格拉姆角场对其进行变换,将两种一维时序信号转化为格拉姆求和场和格拉姆差场,最后,将生成的两组图像同时送入CNN进行并行学习训练,实现逆变器故障诊断。

拉姆角场的原理:格拉姆角场(GAF)是一种将一维序列转化为图像的方法,分为格拉姆求和GASF场和格拉姆差场GADF它对笛卡尔坐标系下的时间序列进行极坐标编码,再通过三角运算生成格拉姆矩阵,从而将一维时间序列转化为二维图像。转换后的图像可以保留数据的时间依赖性和潜在联系特征,同时具有较大的稀疏性,剔除了多模态间的冗余信息。

模型改进:我们提出的模型在上述模型基础上作出改进采用双支路结构,仅需原始故障波形数据,即可根据波形数据,将一维序列转化为二维格拉姆角场图像。①一路为GASF求和场输入经CNN提取和场图像特征,②另一路为GADF格拉姆差场,入经CNN提取图像特征,实现两类高维图像特征融合。③融合多头注意力机制(Muti-head Self Attention,MSA)有效把握提取特征的贡献程度,将特征进行重点强化,提高故障识别的准确率,并计算精确度、召回率、精确率、F1分数等评价指标。故障识别流程如下:

创新点:

1、时序图像化:将一维故障波形转化为二维图像,可以把时间序列转成图⽚,充分利⽤深度学习在图像视觉上的优势,提取波形转换后的颜色纹理等特征。
2、多通道输入:将二维GASFGADF图像融合,可以综合利用不同格拉姆角场的信息,从而更全面地描述数据的特征。这有助于提取更丰富、更有区别性的特征,从而提高分类和识别的准确性。
3、空间特征学习:CNN(卷积神经网络)在图像处理中表现出色,能够有效地学习图像的空间特征和局部模式。将CNN用于图像数据的处理可以帮助提取图像的纹理、形状和边缘等特征,有助于更准确地进行分类和故障识别。
4、融合优势:通过融合不同图像模态的信息,算法可以弥补两种二维图像各自的局限性。例如,GASF图像可能对于某些故障模式更敏感,而GADF则对于其他模式更敏感。将它们结合起来,可以增强算法的鲁棒性和泛化能力。
5、多头自注意力机制:融合多头注意力机制MSA有效把握提取特征的贡献程度,将特征进行重点强化,提高故障识别的准确率。
6、提高泛化能力:多模态融合可以帮助算法更好地理解数据的本质特征,从而减少过拟合的风险,提高算法在新数据上的泛化能力。
适用领域:适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。
直接替换数据就可以,使用Excel表格直接导入,不需要对程序大幅修改。程序内有详细注释,便于理解程序运行。
数据格式:一行一个样本,最后一列为样本所属的故障类型标签
程序结果:(由上述一维序列自动转化为格拉姆图像)
部分图片来源于网络,侵权联系删除!
完整代码:https://mbd.pub/o/bread/ZZqYm59v

欢迎感兴趣的小伙伴点击左下角阅读原文上方链接获得完整版代码哦~,关注小编会继续推送更有质量的学习资料、文章程序代码~

创新优化及预测代码
免费分享研究理论及方法,基础代码资料,努力提供电力系统相关专业预测及优化研究领域的创新性代码,保质保量!面包多地址:https://mbd.pub/o/yc_yh/work
 最新文章