点击上方卡片进入五分钟学大数据主页
然后点击右上角 “设为星标”
比别人更快接收好文章
数据的本质是利用数学观察、记录、理解世界;数据分析的过程就是人类从定性到定量、模糊到精准过程。大家都喜欢看数据,而不是通过一堆的文字、现象进行决策判断。
指标=数据+业务场景,能够指导业务制定下一步行动方案。
例如:【体重】是一个数据,120KG不代表胖,60KG也不代表瘦,这个数字的或大或小并不能从说明什么问题,因为还有身高的因素。而【体脂率】是一个衡量人体内脂肪含量的多少的指标,对男性而言3-4%左右的体脂是必须脂肪,对女性而言10-12%的脂肪是必须脂肪,低于这个标准就会影响健康。另外,男性体脂高于25%、女性高于35%则属于肥胖,不但难看还会影响健康。因此【体脂率】是一个可以指导人们下一步行动的“指标”,而【体重】只是一个数据。
1、使用场景(who、when、where)
解决指标的维度问题,通过定义维度可以明确指标所能支持的分析场景,例如【体脂率】可以支持性别、年龄段、地区等维度,那对应的可以支持对不同性别、年龄段、地区人群的分析。
2、指标定义(what)
解决指标的计算口径问题,大多数情况下需要解决的是同名不同义、同义不同名的问题,如下图的销售额、上架数量两个指标所示。
3、指标用途(why)
解决指标的逻辑问题,明确指标与指标之间的逻辑关系,如:销售利润=销售额-采购成本-头程税费-退税差额,毛利润=销售利润-呆滞计提-资金占用利息。
明确了指标应该解决的问题,接下来就是如何把指标构建成为一套指标体系。这里给出两套比较常用的指标体系建设方法论,一个是海盗指标法,另一个是第一关键指标法(现在也叫北极星指标,名称不同但是理念是一致的)。海盗指标法(AARRR):
2007 年,500 Startups 创业孵化器的创始合伙人 Dave McClure 针对创业公司应该关注哪些指标,提出了一套模型—— PirateMetrics,即海盗指标法,思想如下。
它将创业公司应该关注的指标切分成了获取、激活、留存、收入、推荐等5个环环相扣的模块,在每个模块中需要关注的指标都看过《增长黑客》的朋友对这个模型应该不陌生。AARRR模型的每个层级所衡量的关键指标是不同的。
这个模型对于流量→收入转化的指标建设有相当的指导意义,适用于大部分的互联网公司。但对于传统电商这类关注供应链、管理成本的企业来说,这套指标体系并不能覆盖所有的场景,因此我们主要采用的是第一关键指标法作为指标体系建设的理论基础。第一关键指标法:
第一关键指标法的核心思想,不是说一个公司只为一个指标负责,而是说在任意一个时间点,肯定只有一个最关键的指标,但随着业务的发展关注重点会有变化。所处商业模式一般有电子商务、SaaS、移动APP、双边市场、媒体、UCG等,所处阶段从大的阶段可以分为MVP、增长、营收三个阶段,往细了分又可以再拆分为5个阶段,每个阶段的指标体系需要解决的问题都有差异。
在项目建设期间,公司已经成为国内跨境电商领域的巨头之一,相比起用户规模,在这个阶段公司是上下更关注的是营收(以更低的成本获取更多的用户和营业额),各事业部的OKR也是以销售额作为第一考核点。因此,虽然销售额是一个所谓的“虚荣指标”(销售额的高低并不能直接说明公司的经营状况),但是我们仍然将该指标作为第一关键指标,在此基础上进行指标体系的梳理。
在销售额这个第一关键指标的指导下,需要关注的不只是用户转化、留存率的情况,还需要关注采购、仓储、物流等各个环节的成本、时效等,因此将指标模块划分如下。
确定各个模块的核心关注指标之后,我们从第一关键指标开始,从上往下梳理指标之间的逻辑关系。
不同行业在不同发展阶段,最终绘制出来的“指标树”可能有很大的差异。不同的指标体系方法论适用场景不同,建议结合不同的方法论进行指标梳理,但不管是第一关键指标法还是海盗指标法,重点都在于如何让指标为公司经营提供决策依据。
--END--
当下企业内部的数字分析发展如火如荼,企业级BI的重要性不断凸显,不仅要能够在业务需求角度以数据分析助力智能决策,还能够在组织升级和解决方案的多层次,满足规模型企业的复杂需求。
如果大家对指标建设体系、企业级BI感兴趣,那么《企业级BI平台白皮书》是一份不容错过的资源。这本书是业内首部聚焦规模型企业数字化转型,探寻BI平台企业级能力建设方法论的白皮书,提供了实用的BI平台能力建设方法论,以及世界500强股份制银行、万店饮品连锁品牌、头部互联网公司在内的各行业规模型企业的实践分析。推荐下载阅读:
上方扫码即可下载