实验固体力学正处于一个关键点,机器学习(ML)方法由于数据存储和处理能力的显著进步,正在迅速普及到发现过程。许多被力学社区采用的机器学习最初是为科学和工程之外的应用开发的,因此可能会产生具有可疑物理有效性的结果。为了确保这些数据驱动方法是可信的,明确需要将物理原理嵌入到其架构中,评估和比较基于基准数据集的机器学习框架,并测试其更广泛的扩展性。框架必须基于明确的目标、可量化的误差和明确定义的扩展范围。这些原则使机器学习模型具有广泛的架构,能够被有意义地分类、比较、评估并扩展到更广泛的实验和计算框架中。这些原则的应用通过对两种不同用例(声发射和共振超声波光谱)的机器学习模型的调查来展示,并讨论了实验力学中可信机器学习的未来前景。
一种可解释的机器学习方法,即基于物理信息的遗传编程符号回归(P-GPSR),被整合进一个连续体热力学模型开发构成模型中。这种结合热力学分析的策略通过为一种理想材料(含空洞,即Gurson屈服函数)生成屈服函数来展示。首先,使用基于热力学的分析来导出模型需求,并在定制的P-GPSR实施中作为适应度标准,这些需求在解决方案中得到了强有力的执行。P-GPSR实施提高了准确性、通用性和训练时间,与未包含物理信息的同类GPSR代码相比有所改进。通过P-GPSR框架生成的屈服函数是一个复合函数,描述了一类材料,并具有更高的可解释性。复合函数中的P-GPSR输入函数的物理意义是从热力学分析中获得的。对于为何实施的P-GPSR功能能改善传统GPSR算法结果提供了基本解释。
固体力学是研究可变形固体在外界因素(如载荷、温度、湿度等)作用下所产生的位移、运动、应力、应变和破坏等的力学分支。随着科学技术的迅速发展和工程范围的扩大,固体力学的研究也在不断地深入和拓展。深度学习作为一种强大的工具,为固体力学的研究提供了新的思路和方法。随着深度学习技术的不断发展,越来越多的优化算法被引入到固体力学的研究中。这些算法不仅提高了神经网络的训练效率,还增强了其泛化能力和鲁棒性。
多物理场耦合分析:在固体力学的研究中,常常需要考虑多物理场的耦合作用。深度学习技术可以有效地处理这种复杂的耦合关系,为固体力学的研究提供更加全面的解决方案。
数据驱动的固体力学研究:随着大数据技术的发展,数据驱动的固体力学研究逐渐成为了一个重要的研究方向。深度学习技术可以从海量的数据中提取出有用的信息,为固体力学的研究提供数据支持。深度学习在固体力学领域展现出了极大的潜力和价值,其中包括但不限于:
材料建模与预测:利用深度学习模型如卷积神经网络(CNN)进行材料性能预测和建模,包括材料的强度、弹性模量等。
损伤识别与分析:通过深度学习技术处理传感器数据,识别和分析固体材料中的损伤、裂纹扩展等问题。
结构优化与设计:通过深度学习优化结构设计,以提高材料的性能和效率,如在航空航天和汽车工业中的应用。
非线性行为建模:应用深度学习处理复杂的非线性固体力学问题,如塑性变形、断裂行为等。
实验数据分析:通过深度学习算法处理实验数据,提取和分析固体材料的行为特征和性能。
这些应用展示了深度学习在固体力学领域中的潜力,帮助研究人员和工程师更好地理解和优化材料和结构的行为与性能。
1.培养具备深厚固体力学与深度学习技术知识的专业人才,学员们将熟练掌握固体力学的基本原理和控制方程,同时精通深度学习算法的原理和应用,能够创新性地设计和优化固体力学问题求解方法。
2.揭示深度学习在固体力学中相比传统方法的优势,探讨其在材料特性预测、结构优化设计、非线性行为模拟等方向的研究进展和应用潜力。
3.介绍深度学习在固体力学领域的发展现状,启发学员的创新性思维,推动固体力学问题的求解方法向智能化和自适应化方向发展。
4.通过分析深度学习在固体力学中的流场预测、边界条件识别、裂纹扩展模拟等应用案例,使学员深入理解其在实际工程问题中的应用场景和效果。
5.拓宽学员的国际视野,让他们接触和学习国际上的先进研究成果。培养具备跨学科整合能力的学员,使他们能够在固体力学、深度学习、数据科学等领域之间架起桥梁,开展创新性研究。
主讲老师来自国内高校,拥有扎实的理论知识和丰富的研究经验,研究成果在多个国际高水平期刊上发表,至今他已经发表了40余篇SCI检索论文。授课方式深入浅出,能够将复杂的理论知识和计算方法讲解得清晰易懂,受到学员们的一致认可和高度评价!
第一天
课程目标:初步了解神经网络,并能够使用Pytorch框架从头实现数据驱动的神经网络训练。
理论+实操内容(上午)
神经网络概述
介绍神经网络是什么,常见的神经网络的类型(前馈神经网络、卷积神经网络、循环神经网络等)
神经网络应用
讲述神经网络作为一种强大的机器学习技术,在各个领域的广泛应用(图像识别、自然语言处理、金融科技、推荐系统、环境科学等)。
神经网络的构建模块
讲述神经网络的基本构建模块,包括神经元、层、激活函数等核心组成部分。
基础环境搭建
指导学员如何搭建深度学习开发环境,包括使用Conda创建Python虚拟环境、PyTorch等必要的工具和库的安装。
计算及Pytorch框架
讲述数据如何利用Numpy从文件读取存储,到数据类型、矩阵变换和tensor的常用计算。
理论+实操内容(下午)
数据驱动材料Voigt体模量预测
讲解从头实现神经网络数据驱动回归Voigt体模量(数据处理,神经网络搭建,定义损失函数,模型训练及评估)
数据驱动材料表面缺陷识别
讲解卷积神经网络实现数据驱动识别材料表面缺陷类别(数据处理,神经网络搭建,定义损失函数,模型训练及评估)
第二天
课程目标:初步认识物理信息神经网络,能区分正问题、逆问题等概念,并初步掌握物理信息神经网络。
理论+项目实操(上午)
PINN内容概述
介绍物理信息神经网络(PINN)基本概念,以及作为神经网络新兴方法分支的独特之处。
PINN应用领域
重点介绍PINN几个具体应用领域,例如,材料载荷、裂纹扩展、热流动力学、流体力学等(主要围绕课程内容介绍即可)。
PINN方法原理
重点讲解PINN解偏微分方程的方法原理,包括正问题和逆问题的具体概念和解决方法。
阻尼振荡器振子位移动态估计
讲解阻尼振荡器的背景知识(如阻尼振动的基本方程等)、建立物理模型并使用物理信息神经网络优化求解动态位移。
参数反演摩擦系数识别
讲解如何通过物理信息神经网络在观测数据存在噪声的情况下识别出阻尼振动方程中的摩擦系数 𝜇。
理论+项目实操(下午)
线性弹性方形域周期性载荷
讲解利用物理信息神经网络解决方形域内周期性载荷作用下材料的线性弹性力学行为问题。
Physics-Informed Deep Learning and its Application in Computational Solid and Fluid Mechanics
线性单向扩散解析动力学
讲解物理信息神经网络求解分子扩散等过程中描述物质在一维空间内随时间扩散的经典偏微分方程。
Application of neural networks to improve the modelling of cleaning processes
多尺度各向同性扩散场
讲解利用物理信息神经网络高效地模拟工程应用中非常普遍的二维空间中的物质扩散问题。
Application of neural networks to improve the modelling of cleaning processes
第三天
课程目标:基本掌握物理信息神经网络能够从头思考并构建常见的多约束损失函数,掌握物理信息神经网络在热传中的应用。
理论+项目实操(上午)
再见PINN之多约束损失架构
讲解在解决具有复杂约束的工程问题时如何构建一个能够同时满足真实数据条件、初值条件、偏微分方程结构以及边界条件的多约束损失函数。
对称破裂波动力学
讲述如何通过空间域扩展技术和加权损失函数解决冲击管案例中的由于初始条件不连续引起的物理信息神经网络数值振荡问题。
Physics-Informed Deep Learning and its Application in Computational Solid and Fluid Mechanics
逆向压力波演化探究
讲解空间域扩展技术和加权损失函数在逆冲击管问题中为不连续点提供平滑的过渡的案例。
Physics-Informed Deep Learning and its Application in Computational Solid and Fluid Mechanics
理论+项目实操(下午)
线性热传导解析
讲解如何利用物理信息神经网络给热传导方程提供高效、连续的解决方案。
Deep Learning for Approximating Solutions to Partial Differential Equations
多维空间热流动力学
探讨如何使用物理信息神经网络解决二维空间中的热扩散问题描述了热量在物体内部的传递。
Deep Learning for Approximating Solutions to Partial Differential Equations
时空耦合动态热扩散过程
介绍物理信息神经网络解决具有时间依赖性的二维空间热扩散问题,描述热量在物体内部随时间和空间分布的演变。
Deep Learning for Approximating Solutions to Partial Differential Equations
第四天
课程目标:打破物理信息神经网络“求解偏微分方程”思维定视,掌握屈曲荷载问题的解决方案。
理论+项目实操(上午)
风轮轴承载荷疲劳行为智能诊断
讲解构建基于递归神经网络的PINN模型,通过模拟 SN曲线来预测风力发电机轴承在循环载荷下的累积损伤。
Estimating model inadequacy in ordinary differential equations with physics-informed neural networks
机翼裂纹扩展智能演化与分析
讲授如何基于物理信息递归神经网络应用Paris定律,来模拟和预测实际工程问题中材料在反复载荷作用下的裂纹扩展和演化情况。
Estimating model inadequacy in ordinary differential equations with physics-informed neural networks
理论+项目实操(下午)
非线性载荷下的弹性板响应
讲解如何应用物理信息神经网络解决实际工程中受到不均匀拉伸力时经典板壳理论问题。
A physics-guided neural network framework for elastic plates Comparison of governing equations-based and energy-based approaches
几何缺陷诱导的应力集中效应
讲解如何使用物理信息神经网络来模拟材料力学中常见的设计承受载荷结构时开孔导致的应力集中现象。
A physics-guided neural network framework for elastic plates Comparison of governing equations-based and energy-based approaches
板结构屈曲与后屈曲行为
讲解物理信息神经网络处理外压力作用下的挠度载荷时涉及平面内和平面外变形的复杂多维结构问题。
A physics-guided neural network framework for elastic plates Comparison of governing equations-based and energy-based approaches
临界屈曲载荷稳定性分析
讲解物理信息神经网络在偏微分方程损失不适用时处理平面内压缩下的屈曲荷载问题的解决方案。
A physics-guided neural network framework for elastic plates Comparison of governing equations-based and energy-based approaches
第五天
课程目标:学会应用物理信息神经网络解决振动问题,开阔视野利用物理信息神经网络结合迁移学习从低保真数据获取高保真解并加速网络收敛。
理论+项目实操(上午)
含时纵向振动波动力学与结构响应
讲解物理信息神经网络解决固体力学中两端固定梁初始时刻施加正弦纵向振动的典型波动问题。
APPLIED MATHEMATICS AND MECHANICS (ENGLISH EDITION)
纵向振动参数动态反演与位移场重构
讲解物理信息神经网络通过梁纵向振动的动态响应反推关键参数。
APPLIED MATHEMATICS AND MECHANICS (ENGLISH EDITION)
含时横向振动特性及欧拉-伯努利梁动态行为
讲解物理信息神经网络求解涉及空间和时间导数的经典的结构动力学横向振动欧拉-伯努利梁方程。
APPLIED MATHEMATICS AND MECHANICS (ENGLISH EDITION)
横向振动响应序列预测与系统参数估计
讲解物理信息神经网络如何解决横向振动逆问题,从已知的结构响应数据中识别出材料的关键力学参数。
APPLIED MATHEMATICS AND MECHANICS (ENGLISH EDITION)
理论+项目实操(下午)
顶盖驱动空腔问题
讲解物理信息神经网络在求解顶盖驱动空腔二维稳态Navier-Stokes方程时通过迁移学习提高准确性并加速收敛。
Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks
鳍片热流体耦合效应
讲解物理信息神经网络应用迁移学习技巧解决涉及流体动力学与热传递的耦合问题。
Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks
异质旋转介质中的流体路径优化
讲解利用物理信息神经网络模拟非均质性情况旋转效应会导致由科里奥利力引起的二次流现象。
Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks
旋转多孔介质中的对流热传递高级仿真
讲解如何使用物理信息神经网络实现涉及到流体力学、热传递以及多孔介质物理的复杂耦合问题的高级仿真。
Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks
二
深度学习流体力学
深度强化学习(DRL)最近被广泛应用于物理和工程领域,因为它能够解决以前由于非线性和高维性而无法解决的决策问题。在过去的几年中,它已经在该领域的 计算力学 ,特别是在流体动力学中,最近在流动控制和形状优化中的应用。在这项工作中,我们进行了详细的审查现有的DRL应用流体力学问题。此外,我们提出了最近的结果,进一步说明在流体力学的DRL的潜力。每种情况下使用的耦合方法进行了介绍,详细介绍了它们的优点和局限性。我们的审查还侧重于比较与经典的方法为 最优控制 和优化。最后,描述了几个测试用例,说明在这一领域取得的最新进展。本出版物的目的是向希望用这些方法解决新问题的研究人员提供对DRL能力的理解,以及在流体力学方面的最新应用,在流体力学和机械工程领域,人们也面临着高维非线性问题。例如,使用计算模拟来测试几种不同的设计或配置已被证明是一种有用的技术。然而,探索的可能性的数量可以使这种搜索困难,因为它往往是不可行的,以评估所有的配置。因此,自动优化程序的帮助是必要的,以帮助找到最优的设计。
深度学习在流体力学应用前沿研究主要集中在基于深度学习的流动建模与预测、深度学习与多尺度建模、深度学习在湍流建模中的应用、深度学习与流动控制、深度学习在多相流动建模中的应用、深度学习与流体力学反问题求解等方面。传统的流体力学模拟方法在处理高复杂度、非线性问题时可能会遇到限制,而深度学习技术可以为流体力学带来新的思路和方法。深度学习在流体力学领域的应用为解决复杂流动问题提供了新的方法和思路,为提高流体动力学仿真的精度和效率,实现流场的优化和控制,以及对复杂流动现象的理解提供了新的途径。
流动建模和预测:深度学习可以用于流体力学中的流动模式识别和预测,例如通过卷积神经网络(CNN)来分析流场的特征,实现对流动行为的预测和模式识别。
湍流建模:深度学习可以用于湍流模拟和建模,传统方法对于湍流模式的预测和模拟存在挑战,而深度学习可以通过学习大量的湍流数据来提高湍流模式的准确性。
流动控制:深度学习可以用于流动控制领域,通过对流动系统的实时数据进行分析和预测,从而实现流动控制的智能化和优化。
多相流建模:深度学习可以用于多相流动的建模和预测,例如在液体-气体界面的动态行为、泡沫流动等方面的研究中发挥作用。
反问题求解:深度学习可以用于流体力学中的反问题求解,例如逆问题、参数估计等方面,提高对复杂流场的理解和分析能力。
流体力学数据挖掘:深度学习可以帮助识别和利用流体力学数据中的模式和规律,从而实现对流体力学系统更深入的理解。近年来发过哪些顶刊以及方向:
JCP| Physics-informed neural networks:A deep learning framework for solve forward and inverse problems involves nonlinear partial differential equations
Nature communications| Deep learning for universal linear embeddings of nonlinear dynamics
ACM Digital Library| Learning Koopman invariant subspaces for dynamic mode decomposition
Computer Science| Deep learning and its application in physical phenomena
Science Direct| Deep Learning for Flow Prediction in Complex Engineering Applications
Journal of Fluid Mechanics| Reynolds averaged turbulence modelling using deep learning with embedded invariance
本课程围绕深度学习的基础理论与流体力学的应用展开,通过深度学习在流体力学中的应用案例分析深度学习在流体力学中的流场预测、边界条件识别、湍流模拟以及优化问题求解等方面的应用案例,深入了解其实际应用场景。实践项目:包括流场预测、边界条件识别、湍流模拟以及优化问题求解等实践项目,通过动手操作,加深对深度学习与流体力学理论的理解,并培养实际问题解决能力。
让学员掌握:
深度学习在流体力学中的应用案例分析:分析深度学习在流体力学中的流场预测、边界条件识别、湍流模拟以及优化问题求解等方面的应用案例,深入了解其实际应用场景。
实践项目:包括流场预测、边界条件识别、湍流模拟以及优化问题求解等实践项目,通过动手操作,加深对深度学习与流体力学理论的理解,并培养实际问题解决能力。
授课老师
主讲老师来自国内顶尖985高校,擅长计算力学与机器学习建模研究。近年来发表SCI论文15篇,授权三项发明专利。研究方向包括:计算流体力学、流体力学中的机器学习方法、深度学习方法、数据驱动的计算力学、有限元方法等。
深度学习流体力学
一、流体力学基础理论与编程实战
1.流体力学基本理论
2.湍流理论与湍流模型简介
3.傅里叶变换和分析
4.伪谱法求解流体力学方程
a) 非线性Burgers方程案例分析
b) 二维不可压NS方程案例分析
案例实践:伪谱法求解非线性Burgers方程(经典案例数据代码提供给学员)
二、Fluent简介与案例实战
1.Fluent软件概述:软件的功能和特点、Fluent在流体力学中的应用
2.网格划分与计算流程:网格划分技术、Fluent计算流程和步骤
3.Fluent圆柱绕流案例分析
4.两相流的Fluent案例分析(小球入水)
5.Fluent结果后处理
案例实践:圆柱绕流、小球入水的Fluent求解流程(经典案例文件提供给学员)
三、机器学习基础理论与实战
1.人工智能的基本概念
2.机器学习算法简介
a) 最优化理论算法
b) 支持向量机等机器学习算法
3.深度学习的基本概念及实战
a) RNN与时间序列
b) CNN与微分算子
4.深度学习在流场超分辨上的应用
a) 基于卷积神经网络的流场超分辨分析
b) 基于生成对抗网络的流场超分辨分析
案例实践:Python编程深度学习算法
Ø 梯度下降算法的Python实现(经典案例数据代码提供给学员)
Ø 二阶函数极值问题的求解(经典案例数据代码提供给学员)
Ø CNN模型实现流体的超分辨(经典案例数据代码提供给学员
四、嵌入物理信息的深度学习构建及其应用
物理信息神经网络(Physics-Informed Neural Networks, PINN)
a) PINN基本原理介绍
b) PINN案例分析
2.神经常微分方程(Neural Ordinary Differential Equation, Neural ODE)的基本原理及应用
a) ODE时间积分
b) Neural ODE实战
3.嵌入几何对称性的神经网络及其在哈密顿力学中的应用
a) 哈密顿力学基本原理介绍
b) 不可分辛神经网络案例分析
4.嵌入高精度格式的神经网络及其在可压缩流体中的应用
a) 双曲型偏微分方程及其应用
b) 嵌入高精度格式的神经网络案例分析
案例实践:多体问题的Neural ODE求解(经典案例数据代码提供给学员)
五、流动生成与后处理
1.Tecplot可视化展示标量场、向量场等
2.Houdini展示渲染高保真流场
3.基于扩散模型(Diffusion Model)的流动生成
4.BackTrace实现流场高精度可视化
a) BackTrace基础介绍
b) BackTrace案例分析
案例实践:Python编程实现BackTrace算法(经典案例数据代码提供给学员)
深度学习在流体力学应用课程时间:
2024.08.3-----2024.08.4(上午9:00-11:30 下午13:30-17:00)
2024.08.6------2024.08.7(晚上19:00-22:00)
2024.08.10------2024.08.11(上午9:00-11:30 下午13:30-17:00)
深度学习在固体力学应用课程时间:
2024.08.10-----2024.08.11(上午9:00-11:30 下午13:30-17:00)
2024.08.13------2024.08.14(晚上19:00-22:00)
2024.08.17------2024.08.18(上午9:00-11:30 下午13:30-17:00)
课程特色--全面的课程技术应用、原理流程、实例联系全贯穿
学习模式--理论知识与上机操作相结合,让零基础学员快速熟练掌握
课程服务答疑--主讲老师将为您实际工作中遇到的问题提供专业解答
授课方式:
通过腾讯会议线上直播,理论+实操的授课模式,老师手把手带着操作,从零基础开始讲解,电子PPT和教程开课前一周提前发送给学员,所有培训使用软件都会发送给学员,有什么疑问采取开麦共享屏幕和微信群解疑,学员和老师交流、学员与学员交流,培训完毕后老师长期解疑,培训群不解散,往期培训学员对于培训质量和授课方式一致评价极高
腾讯会议问题实时解答及学员反馈
课程报名费用:
深度学习流体力学、深度学习固体力学
每人每班:¥4980元 (含报名费、培训费、资料费、提供课后全程回放资料)
福利:提前报名缴费可享受300元优惠(仅限十五名)
套餐价:同时报名两个课程¥9080元(原价9960)(含报名费、培训费、资料费)
现在报名一门赠送一门往期课程回放
报名两门赠送两门往期回放
赠送往期课程回放(可点击跳转详情链接):
深度学习材料专题 机器学习材料专题 材料基因组专题 机器学习分子动力学专题
课后学习完毕提供全程录像视频回放,针对与培训课程内容进行长期答疑,微信解疑群永不解散,参加本次课程的学员可免费再参加一次本单位后期组织的相同的专题培训班(任意一期都可以)