PyTorch可复现/重复实验的相关设置

科技   2024-10-25 10:05   中国香港  

点击上方小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达
作者丨Alxander@知乎(已授权)
来源丨https://zhuanlan.zhihu.com/p/448284000
编辑丨极市平台

极市导读

 

深度学习在训练过程中,由于随机初始化,样本读取的随机性,导致重复的实验结果会有差别,个别情况甚至波动较大。一般论文为了严谨,实验结论能够复现/可重复,通常采取固定随机种子使得结果确定。本文总结了一些去定型设置的方法,附详细代码。 

确定性设置

1 随机种子设置

随机函数是最大的不确定性来源,包含了模型参数的随机初始化,样本的shuffle。

  • PyTorch 随机种子
  • python 随机种子
  • numpy 随机种子
# PyTorch
import torch
torch.manual_seed(0)

# python
import random
random.seed(0)

# Third part libraries
import numpy as np
np.random.seed(0)

CPU版本下,上述随机种子设置完成之后,基本就可实现实验的可复现了。

对于GPU版本,存在大量算法实现为不确定结果的算法,这种算法实现效率很高,但是每次返回的值会不完全一样。主要是由于浮点精度舍弃,不同浮点数以不同顺序相加,值可能会有很小的差异(小数点最末位)。

2 GPU算法确定性实现

GPU算法的不确定来源有两个

  • CUDA convolution benchmarking
  • nondeterministic algorithms

CUDA convolution benchmarking 是为了提升运行效率,对模型参数试运行后,选取最优实现。不同硬件以及benchmarking本身存在噪音,导致不确定性

nondeterministic algorithms:GPU最大优势就是并行计算,如果能够忽略顺序,就避免了同步要求,能够大大提升运行效率,所以很多算法都有非确定性结果的算法实现。通过设置use_deterministic_algorithms,就可以使得pytorch选择确定性算法。

# 不需要benchmarking
torch.backends.cudnn.benchmark=False

# 选择确定性算法
torch.use_deterministic_algorithms()

RUNTIME ERROR

对于一个PyTorch 的函数接口,没有确定性算法实现,只有非确定性算法实现,同时设置了use_deterministic_algorithms(),那么会导致运行时错误。比如:

>>> import torch
>>> torch.use_deterministic_algorithms(True)
>>> torch.randn(2, 2).cuda().index_add_(0, torch.tensor([0, 1]), torch.randn(2, 2))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: index_add_cuda_ does not have a deterministic implementation, but you set
'torch.use_deterministic_algorithms(True)'. ...

错误原因:

index_add没有确定性的实现,出现这种错误,一般都是因为调用了torch.index_select 这个api接口,或者直接调用tensor.index_add_。

解决方案:

自己定义一个确定性的实现,替换调用的接口。对于torch.index_select 这个接口,可以有如下的实现。

def deterministic_index_select(input_tensor, dim, indices):
"""
input_tensor: Tensor
dim: dim
indices: 1D tensor
"""
tensor_transpose = torch.transpose(x, 0, dim)
return tensor_transpose[indices].transpose(dim, 0)

样本读取随机

  1. 多线程情况下,设置每个线程读取的随机种子
  2. 设置样本generator
# 设置每个读取线程的随机种子
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
numpy.random.seed(worker_seed)
random.seed(worker_seed)

g = torch.Generator()
# 设置样本shuffle随机种子,作为DataLoader的参数
g.manual_seed(0)

DataLoader(
train_dataset,
batch_size=batch_size,
num_workers=num_workers,
worker_init_fn=seed_worker,
generator=g,
)

参考文献

Reproducibility - PyTorch 1.10.1 documentation

torch.index_select - PyTorch 1.10.1 documentation

下载1:OpenCV-Contrib扩展模块中文版教程
在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲
小白学视觉公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲
小白学视觉公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群


欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~


小白学视觉
哈工大在读博士的公众号,《OpenCV 4快速入门》的作者,面向初学者介绍计算机视觉基础知识、OpenCV使用、SLAM技术,深度学习等内容。
 最新文章