点击蓝字
关注我们
AI TIME欢迎每一位AI爱好者的加入!
点击 阅读原文 观看讲者讲解回放!
论文标题:NoisyGL: A Comprehensive Benchmark for Graph Neural Networks under Label Noise
论文地址:https://arxiv.org/pdf/2406.04299
项目地址:https://github.com/eaglelab-zju/NoisyGL
提出了 NoisyGL,第⼀个针对标签噪声下的图神经⽹络的综合基准库。 通过⼤量的实验,针对标签噪声下的图神经⽹络提出了⼀些重要的见解。 为标签噪声下的图神经⽹络提供了⼏点未来的发展⽅向。
均匀噪声(Uniform Noise)或对称噪声:假设真实标签有的概率均匀地翻转到其他所有的类别。形式上,对于,我们有,其中 c 表示类别数量。 对偶噪声(Pair Noise)或对偶翻转、⾮对称噪声:假设真实标签只能以概率 ϵ 翻转到其对应的对偶类别,而不会翻转到其他任何类别。
从 Table 2 中可以看出,标签噪声的传播效应在平均度较低的稀疏图(如 Cora、 Citeseer、Pubmed 和 DBLP)上非常严重,但在密集图(如 Amazon-Computers、 Amazon-Photos、Blogcatalog 和 Flickr)上则不明显。对此现象的解释是:稀疏图上的未标记节点在其邻域中通常只有有限数量的标注节点可用于监督,所以这些未标注节点的预测结果在很大程度上依赖于其邻域中有限的标注节点,如果这些节点被错误标注,则很容易导致未标注节点表示的错误学习。相比之下,对于密集图,未标注节点的邻域包含许多可以作为参考的标注节点。
设计广泛适用的 GLN 方法。⼤多数现有的 GLN 方法无法在所有场景中确保⼀致的高性能,尤其在高度异质的图中。为了解决这个问题,我们可能需要探索几个关键问题:a)不同图数据集的共同属性是什么?b)如何利用这些共同属性增强 GNNs 对标签噪声的稳健性?我们的实验结果表明增强图结构可以减少标签噪声在不同密度图中的传播,进而引出第三个问题:c)如果难以识别共同属性,我们能否通过数据增强来统⼀这些特征? 为各种图学习任务设计 GLN 方法。先前对 GLN 的研究主要集中在节点分类任务上。然而,图学习领域还包括其他重要应⽤,如链路预测、边属性预测和图分类等。这些应用也可能受到标签噪声的影响,需要进⼀步关注和探索。 考虑图学习中的其他类型标签噪声。先前对 GLN 的研究假设图数据中存在两种实例无关的标签噪声,即对偶噪声和均匀噪声。然二,更为现实的假设是实例相关标签噪声,但目前尚未有相关的工作。此外,与其它领域的数据不同,图数据存在额外的图结构,图结构很有可能影响图数据的标注过程,因此图数据的标签噪声模型很可能与图拓扑结构相关。
往期精彩文章推荐
关于AI TIME
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
迄今为止,AI TIME已经邀请了2000多位海内外讲者,举办了逾700场活动,超800万人次观看。
我知道你
提出观点,表达想法,欢迎
点击 阅读原文 观看讲者讲解回放!