Google 发布了最新的开放大语言模型 Gemma 2,共涉及4 个开源模型 (2 个基础模型和 2 个微调模型) 。HF模型地址:
Gemma 2 是什么?
Gemma 2 是 Google 最新的开放大语言模型。它有两种规模:90 亿参数和 270 亿参数,分别具有基础 (预训练) 和指令调优版本。Gemma 基于 Google DeepMind 的 Gemini,拥有 8K Tokens 的上下文长度:
gemma-2-9b https://hf.co/google/gemma-2-9b 90 亿基础模型。gemma-2-9b-it https://hf.co/google/gemma-2-9b-it 90 亿基础模型的指令调优版本。gemma-2-27b https://hf.co/google/gemma-2-27b 270 亿基础模型。gemma-2-27b-it https://hf.co/google/gemma-2-27b-it 270 亿基础模型的指令调优版本。
Gemma 2 模型的训练数据量约为其第一代的两倍,总计 13 万亿 Tokens (270 亿模型) 和 8 万亿 Tokens (90 亿模型) 的网页数据 (主要是英语) 、代码和数学数据。我们不知道训练数据混合的具体细节,只能猜测更大和更仔细的数据整理是性能提高的重要因素之一。
Gemma 2 与第一代使用相同的许可证,这是一个允许再分发、微调、商业用途和衍生作品的宽松许可证。
Gemma 2 的技术进展
Gemma 2 与第一代有许多相似之处。它有 8192 Tokens 的上下文长度,并使用旋转位置嵌入 (RoPE)。与原始 Gemma 相比,Gemma 2 的主要进展有四点:
滑动窗口注意力: 交替使用滑动窗口和全二次注意力以提高生成质量。 Logit 软上限: 通过将 logits 缩放到固定范围来防止其过度增长,从而改进训练。 知识蒸馏: 利用较大的教师模型来训练较小的模型(适用于 90 亿模型)。 模型合并: 将两个或多个大语言模型合并成一个新的模型。
与预训练数据集混合类似,关于微调数据集或与 SFT 和
滑动窗口注意力
滑动窗口注意力 https://hf.co/papers/2004.05150 Mistral https://hf.co/papers/2310.06825
软上限和注意力实现
软上限是一种防止 logits 过度增长而不截断它们的技术。它通过将 logits 除以最大值阈值 (soft_cap
),然后通过 tanh
层 (确保它们在 (-1, 1)
范围内) ,最后再乘以阈值。这确保了最终值在 (-soft_cap, +soft_cap)
区间内,不会丢失太多信息但稳定了训练。
综合起来,logits 的计算公式为:logits ← soft_cap ∗ tanh(logits/soft_cap)
Gemma 2 对最终层和每个注意力层都采用了软上限。注意力 logits 上限为 50.0,最终 logits 上限为 30.0。
在发布时,软上限与 Flash Attention / SDPA 不兼容,但它们仍可用于推理以实现最高效率。Gemma 2 团队观察到,在推理过程中不使用软上限机制时,差异非常小。
注意:对于稳定的微调运行,仍需启用软上限,因此我们建议使用 eager
注意力进行微调,而不是 SDPA。
知识蒸馏
知识蒸馏是一种常用技术,用于训练较小的 学生 模型以模仿较大但表现更好的 教师 模型的行为。这是通过将大语言模型的下一个 Token 预测任务与教师提供的 Token 概率分布 (例如 GPT-4、Claude 或 Gemini) 结合起来,从而为学生提供更丰富的学习信号。
根据 Gemma 2 技术报告,知识蒸馏用于预训练 90 亿模型,而 270 亿模型则是从头开始预训练的。
在后期训练中,Gemma 2 团队生成了来自教师 (报告中未指定,但可能是 Gemini Ultra) 的多样化补全集,然后使用这些合成数据通过 SFT 训练学生模型。这也是许多开源模型的基础,如
Zephyr https://hf.co/HuggingFaceH4/zephyr-7b-beta OpenHermes https://hf.co/teknium/OpenHermes-2.5-Mistral-7B
尽管有效,但这种方法存在缺点,因为学生和教师之间的模型容量不匹配可能导致 训练-推理不匹配,即学生在推理期间生成的文本与训练期间看到的文本不同。
为解决这个问题,Gemma 2 团队采用了
“在线蒸馏” https://arxiv.org/pdf/2306.13649
这种方法非常有趣,正如我们在社区中看到的那样,在线 DPO 等在线方法会产生更强的模型,而在线蒸馏的一个优势在于只需要教师的 logits,因此无需依赖奖励模型或大语言模型作为评审员来改进模型。我们期待看到这种方法在未来几个月中是否会在微调人员中变得更受欢迎!
模型合并
模型合并 https://hf.co/blog/mlabonne/merge-models Mergekit https://github.com/arcee-ai/mergekit
根据技术报告,Gemma 2 使用了
Warp https://arxiv.org/abs/2406.16768
指数移动平均 (EMA):在强化学习 (RL) 微调过程中应用。 球形线性插值 (SLERP):在多个策略的 RL 微调后应用。 向初始化线性插值 (LITI):在 SLERP 阶段之后应用。
Gemma 2 的评估
Gemma 模型的表现如何?以下是根据技术报告和新版
开源 LLM 排行榜 https://hf.co/spaces/HuggingFaceH4/open_llm_leaderboard
技术报告结果
Gemma 2 的技术报告比较了不同开源 LLM 在之前开源 LLM 排行榜基准上的性能。
Llama 3 (70B) | Qwen 1.5 (32B) | Gemma 2 (27B) | |
---|---|---|---|
MMLU | 79.2 | 74.3 | 75.2 |
GSM8K | 76.9 | 61.1 | 75.1 |
ARC-c | 68.8 | 63.6 | 71.4 |
HellaSwag | 88.0 | 85.0 | 86.4 |
Winogrande | 85.3 | 81.5 | 83.7 |
该报告还比较了小型语言模型的性能。
Benchmark | Mistral (7B) | Llama 3 (8B) | Gemma (8B) | Gemma 2 (9B) |
---|---|---|---|---|
MMLU | 62.5 | 66.6 | 64.4 | 71.3 |
GSM8K | 34.5 | 45.7 | 50.9 | 62.3 |
ARC-C | 60.5 | 59.2 | 61.1 | 68.4 |
HellaSwag | 83.0 | 82.0 | 82.3 | 81.9 |
Winogrande | 78.5 | 78.5 | 79.0 | 80.6 |
开源 LLM 排行榜结果
注意:我们目前正在新的开源 LLM 排行榜基准上单独评估 Google Gemma 2,并将在今天晚些时候更新此部分。
如何提示 Gemma 2
基础模型没有提示格式。像其他基础模型一样,它们可以用于继续输入序列的合理延续或零样本/少样本推理。指令版本有一个非常简单的对话结构:
<start_of_turn>user
knock knock<end_of_turn>
<start_of_turn>model
who is there<end_of_turn>
<start_of_turn>user
LaMDA<end_of_turn>
<start_of_turn>model
LaMDA who?<end_of_turn><eos>
必须精确地复制此格式才能有效使用。稍后我们将展示如何使用 transformers
中的聊天模板轻松地复制指令提示。
使用 Hugging Face Transformers
随着 Transformerstransformers
版本:
版本 4.42 https://github.com/huggingface/transformers/releases/tag/v4.42.0
pip install "transformers==4.42.0" --upgrade
以下代码片段展示了如何使用 transformers
使用 gemma-2-9b-it
。它需要大约 18 GB 的 RAM,适用于许多消费者 GPU。相同的代码片段适用于 gemma-2-27b-it
,需要 56GB 的 RAM,使其非常适合生产用例。通过加载 8-bit 或 4-bit 模式,可以进一步减少内存消耗。
from transformers import pipeline
import torch
pipe = pipeline(
"text-generation",
model="google/gemma-2-9b-it",
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
messages = [
{"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
]
outputs = pipe(
messages,
max_new_tokens=256,
do_sample=False,
)
assistant_response = outputs[0]["generated_text"][-1]["content"]
print(assistant_response)
可以自动量化模型,以 8-bit 甚至 4-bit 模式加载。加载 4-bit 模式的 270 亿版本需要大约 18 GB 的内存,使其兼容许多消费者显卡和 Google Colab 中的 GPU。这是你在 4-bit 模式下加载生成管道的方式:
pipeline = pipeline(
"text-generation",
model=model,
model_kwargs={
"torch_dtype": torch.bfloat16,
"quantization_config": {"load_in_4bit": True}
},
)
PS:给公众号添加【星标⭐️】不迷路!您的点赞、在看、关注是我坚持的最大动力!
欢迎多多关注公众号「NLP工作站」,加入交流群,交个朋友吧,一起学习,一起进步!
我们的口号是“生命不止,学习不停”!
往期推荐:
一大堆Chinese Llama3正在袭来 LLM2LLM:迭代数据增强策略提升大模型微调效果 如何快速提高大模型的向量表征效果? RAG系统中答案无关片段对LLMs生成答案有何影响? InternLM2技术报告 Qwen1.5-MoE模型:2.7B的激活参数量达到7B模型的性能 RAG与Long-Context之争—没必要争 角色扮演大模型的碎碎念 自我蒸馏方法-减轻大模型微调过程中的灾难性遗忘 Yi技术报告细节分享 大模型增量预训练新技巧-解决灾难性遗忘 如何提高LLMs的文本表征(Text Embedding)能力? DEITA-大模型指令微调的数据高效筛选方法 大模型微调技巧 | 高质量指令数据筛选方法-MoDS 辟谣!微软撤回声称ChatGPT为20B参数的论文,并给出解释。 如何看待微软论文声称 ChatGPT 是 20B (200亿) 参数量的模型? 大模型微调技巧-在Embeeding上加入噪音提高指令微调效果 如何从数据集中自动识别高质量的指令数据 BaiChuan2技术报告细节分享&个人想法 大模型LLM微调经验总结&项目更新 打造LLM界的Web UI 是我们在训练大模型,还是大模型在训练我们? Llama2技术细节&开源影响 大模型时代-行业落地再思考 垂直领域大模型的一些思考及开源模型汇总 如何评估大模型-LLMs的好坏?