首页
时事
民生
政务
教育
文化
科技
财富
体娱
健康
情感
更多
旅行
百科
职场
楼市
企业
乐活
学术
汽车
时尚
创业
美食
幽默
美体
文摘
低EMI DC/DC转换器的PCB设计指南
科技
2024-12-11 17:46
广东
每个开关电源都是一个宽带噪声源。因此,将汽车电路板网络中的DC/DC 变换器集成到汽车控制单元中,同时仍然满足汽车 原始设备制造商(OEM) 的 EMC 要求,是一项很艰巨的任务。
通常,来自 DC/DC 变换器和其他高速电路的噪声会通过所连接的电缆辐射,这些电缆为噪声提供了有效的天线路径。为了阻断这种潜在的辐射路径,需要在每个电缆连接点都设置滤波器电路。但是,只有当噪声源的 H场或 E 场没有耦合到滤波器组件或电缆中时,滤波才会有效。
在近场环境中,场强的下降与距离平方的倒数 (1/d2) 成正比。因此,噪声源、滤波器组件和连接器之间需要保持一定的最小距离。
但实际上,PCB 尺寸和电缆连接器的位置通常取决于机械空间的大小。而且,在 PCB 的某些区域,元件的最大高度可能非常有限,或者也有可能无法进行双面组装。这些硬件条件的限制要求设计人员在决定元件位置和 PCB 布局时要非常谨慎,尤其是在汽车制造等高度监管的行业中。
0
1
布局规划
为避免DC/DC 变换器的电场和磁场被直接耦合到连接器和电缆中,电路必须尽可能远离 PCB 连接点(见图 1)。
图1: 噪声源应尽量远离连接器和电缆
只有距离或额外的屏蔽才能将 EMC 滤波器、连接器和电缆的场强降低到必要的水平,而屏蔽可以代替距离。
最好的方法是采用至少4层、双面组装的 PCB,并将DC/DC 电路和滤波器组件放在电路板相对的两侧。而且,至少有一个内部板层为完整的接地层,以最大可能地减少从噪声源到滤波器电路的交叉耦合。
如果因为系统限制,DC/DC 电路必须靠近连接器,则必须在设计初期即考虑有效的屏蔽。散热器有时也可以用来屏蔽。理想情况下,电感、内置功率 MOSFET 的 DC/DC IC 及其去耦电容都应被屏蔽。
0
2
PCB布局指南
在降压变换器中,主要的场源包括:
由两个电源开关和 C
IN
形成的高 di/dt 环路(热环路),它辐射出宽带磁场
功率 FET 和电感之间的开关节点,具有强电场辐射
辐射电场和磁场的电感
交流磁场可以被能够感应涡流的固体金属区域屏蔽。而铜因其高导电性即为非常有效的屏蔽材质。在PCB 上,返回固定电位的电位差路径中的任何导体都可以有效屏蔽电场辐射。
任何高 di/dt 环路都会辐射出与环路面积和电流幅度成比例的磁场。将输入电容放置在靠近两个电源开关的位置,并采用低阻抗连接,可以最大限度地减小天线环路面积。
为进一步减少该环路产生的磁场,可以在电源开关处对称放置两组电容。理想情况下,这样可以将两个环路中的峰值电流降低一半,从而将 H 场降低 6dB。如果两个环路的方向相反,更将进一步降低辐射的H磁场。
(1)
注:
1)参见 Henry W. Ott,电磁兼容工程,John Wiley,2009 年。
在DC/DC电路的下一层、间距小于100µm的位置应布置完整的GND区域。在这个铺铜区域中,流经电路元件和 PCB 迹线的高 di/dt 电流会产生涡流。涡流与元件侧的原始电流方向相反,两个磁场将相互抵消。如果涡流能够在最短距离内对元件侧的高 di/dt 环路电流进行镜像,则效果最佳。
在超导、零距离和两个环路形状完全匹配的理想情况下,PCB 元件侧的 H 场辐射将被涡流的 H 场完全抵消。
由于DC/DC 电路下方的 GND 铺铜区域有阻抗,因此高 di/dt 涡流会产生电势差,并让该区域产生噪声。这个高噪声的 GND 区域必须与系统 GND 区域分开,尤其要与滤波器和连接器的任何 GND 参考区域隔离。在多层 PCB 中,可以分别布局各层,并通过层间的通孔阻抗来实现隔离。
多层 PCB 的三维视图可以说明这一概念(见图 2)。
在顶层,输入电容(CIN)和两个功率 FET 连接至 VIN区域和 PGND 区域(如上图中的红色部分),它们通过通孔连接到内层。在 VIN路径上,通孔之后必须连接电感元件(例如 1µH 至 2µH的线圈)。这样,来自开关转换的高 di/dt 电流将被限制在 CIN中,不会在PCB上流动。
PGND 区域不应直接连接到元件侧的任何其他 GND,只通过通孔连接到 DC/DC 模块下的 PGND 区域(如上图中的蓝色部分)。其目的是将高频电流限制在元件侧,将噪声与“外界”隔离开来。PCB中至少要设计一层完整的GND,以提供低阻抗的系统参考。请记住,布局也是电路的一部分。
0
3
电感下方要铺铜吗?
有些 PCB 布局工具预设不允许在电感芯下铺铜。对于这个问题,各方观点不一,有人认为根本无需铺铜,有人则认为应该直接在PCB 元件侧线圈正下方铺铜。
图3: 线圈下方无铜层的4层PCB
在图 3 显示的 4 层 PCB 中,线圈下方的任何层中都没有铺铜,其产生的磁场如图中所示。线圈产生的强磁力线直达 PCB 底部并紧紧围绕 PCB,有效耦合到任何连接的电缆中。PCB 上的滤波器组件则被空气旁路。在这种设计下,几乎不可能达到汽车 OEM的EMC标准。
图 4 显示的布局中,铜层直接铺在元件侧的线圈正下方。
图4: 铜层位于PCB上线圈的正下方
这种设计为涡流提供了一个区域来抵消 PCB 外部已有的磁场。内层 2 和底层完全无噪声。EMC 滤波器组件可以有效放置在底部。涡流磁场会稍稍降低线圈的有效电感(通常小于 5%)。涡流还会在 GND铜层中产生一些损耗。铜层直接位于电感磁芯下方还有一个小缺点就是增大了绕组到 GND 的寄生电容。但在大多数设计中,该电容非常低,因此不会产生大的影响。
0
4
PCB布局示例:MPQ443x系列
MPQ443x 系列产品均为40V 同步降压变换器,具有低工作静态电流和 1A 至 3.5A的输出电流,非常适合汽车和工业应用。
MPQ4430 IC (U1) PCB 的顶部具有对称的 CIN 组 (C1A-C1D)。这些电容的 GND 直接连接到 IC PGND 引脚,即底部 FET 的源极。这一片本地 GND 区域噪声较大。在元件侧,这片 GND 区域与其他任何GND 区域都没有直接的连接,唯一的连接处就是通过通孔连接到DC/DC 电路下方层中的GND 区域。在这种配置中,来自功率级的高 di/dt 电流被限制在元件侧。最高电流密度位于 V
IN
和 PGND 之间走线的内边缘,如示例中的绿色椭圆所示(见图 5)。
图5: MPQ4430 PCB顶部布局
V
IN
通过通孔连接到第 3 层。由于通孔存在电感,输入电流的高频部分仍留在顶部。CIN9 抑制了 IC 上的这个 V
IN
节点;但由于它的高度为 6mm ,并且阴极连接到GND,因此也阻断了来自 SW 节点和线圈的部分E场辐射。
顶部 DC/DC 模块周围的切口将所有高频电流保留在该区域内。如果没有切口,则一小部分热回路电流仍会在 PCB 的边角处流动,从而使该区域产生噪声。
高 dV/dt SW节点连接到电感,而电感通常较大并会辐射出电场。对大多数电感而言,如果其绕组起点连接到 SW 节点,则电场辐射会较低。
减少线圈电场辐射的方法之一是在线圈两侧放置输出电容(C2A 和 C2B)。当电容与线圈一样高或更高时,效果最佳。一般而言,相比更大、更高的线圈,尺寸较小、更加扁平的电感具有更好的EMC 性能。
图6: 内层1的推荐PCB布局
经过EMC 优化的PCB,其内层 1 为 GND层。该层应放置在顶部下方 70µm 处(见图 6)。该 GND 区域噪声较大。在DC/DC 模块周围 的GND 区域做切口,可防止剩余电流在连接器和滤波器组件下方层的边缘流动。切口应为两个狭长的开口,准确开在 V
IN
和 V
OUT
被路由到下层DC/DC 电路的位置,以提供预设的本地返回路径。
0
5
测试结果:30MHz 至100MHz传导发射
在 f
SW
= 470kHz 且频谱扩展调制 (SSFM) 条件下,30MHz 至 108MHz 的传导发射测试结果约为 0dBµV,仅比系统噪声高几分贝(见图 7)。
图7: CE发射测试结果(30MHz至108MHz)
MPQ4431带0805 2.2µH 电感和两个 0805 输出电容、且开关频率为 470kHz ,它在没有额外屏蔽或 SSFM 的条件下也通过了低频 RE 单极测试(见图 8)。
图8: 低频单极测试结果
0
6
结语
布局及其寄生元件也是电路的组成部分。对PCB进行优化可以实现 DC/DC 变换器的低 EMI。审慎的元件布置和电路板布局将有助于满足汽车行业严格的 EMC 规范,MPS 的 MPQ4431 降压变换器就是一个良好的范例。
声明:文章来源MPS官网,版权归原作者所有,仅作为分享使用,不代表本号立场,如涉及作品版权问题,请及时与我们联系删除,谢谢!
EDA设计精品智汇馆
终于等到你了,欢迎关注\x26quot;EDA设计智汇馆\x26quot;,我们倾力打造中国EDA行业技术新生大学,视频学习网站:www.580eda.net;QQ交流群:345377375。视频APP可在苹果Store中和华为应用市场查找:EDA无忧学院
最新文章
DC-DC芯片的PCB Layout设计建议
EDA无忧学院 | 2025高速PCB训练营
混合PCB 布局技巧总结
EDA无忧学院 | 2025高速PCB训练营
EDA无忧学院 | 2025高速PCB训练营
PCB“接地和去耦”的问题你搞清楚了吗?
如何成为一名PCB工程师?
DC-DC降压转换器 PCB 设计与原理图设计
PCB设计:如何最大化EMC性能效果?
EDA无忧学院|元旦会员福利大放送
一块PCB板上如何安置RF电路和数字电路?
这8种常见PCB标记你都认识吗?
常用接口PCB设计-HDMI
隔离电源和非隔离电源的区别
大功率开关电源PCB训练营
开关电源中各元件拆解分析
20种常见开关电源拓扑结构及其工作原理
校企合作共谱华章,产教融合共创未来——深圳市英达维诺电路科技有限公司与广东理工职业学院携手前行
大功率开关电源PCB训练营
低EMI DC/DC转换器的PCB设计指南
EDA无忧学院双12超值优惠来了→
EDA无忧学院双12超值优惠来了→
20种常见开关电源拓扑结构及其工作原理
PCB工程师速成训练营 | 零基础学习
什么是PCB“塞孔”?为什么要塞孔?如何实现的?
硬件面试 | 电容测量9问
如何成为一名PCB工程师?你准备好了吗?
智能闹钟硬件设计
GND到底应该如何分?
PCB工程师速成训练营 | 零基础学习
150 个关键的电气电子电路符号和名称
【项目实战】大功率开关电源PCB训练营
这8种常见PCB标记你都认识吗?
5G时代下的电子CAD技术弄潮儿——访深圳市英达维诺电路科技有限公司创始人林超文
这8种常见PCB标记你都认识吗?
作为无源元件之一的电容,其作用你了解吗?
超详细USB Type-C引脚信号及PCB布局布线介绍!
超详细USB Type-C引脚信号及PCB布局布线介绍!
双11狂欢,最后一天!
PCB设计:如何最大化EMC性能效果?
超燃双11,福利大放价
EDA无忧学院网校平台使用攻略
超燃双11,福利大放价
如何成为一名PCB工程师?你准备好了吗?
电路板常用的胶有哪些?
如何成为一名PCB工程师?你准备好了吗?
如何成为硬件工程师高手?——硬件工程师系统培训
智能闹钟硬件设计
如何成为一名PCB工程师?你准备好了吗?
如何成为硬件工程师高手?——硬件工程师系统培训
分类
时事
民生
政务
教育
文化
科技
财富
体娱
健康
情感
旅行
百科
职场
楼市
企业
乐活
学术
汽车
时尚
创业
美食
幽默
美体
文摘
原创标签
时事
社会
财经
军事
教育
体育
科技
汽车
科学
房产
搞笑
综艺
明星
音乐
动漫
游戏
时尚
健康
旅游
美食
生活
摄影
宠物
职场
育儿
情感
小说
曲艺
文化
历史
三农
文学
娱乐
电影
视频
图片
新闻
宗教
电视剧
纪录片
广告创意
壁纸头像
心灵鸡汤
星座命理
教育培训
艺术文化
金融财经
健康医疗
美妆时尚
餐饮美食
母婴育儿
社会新闻
工业农业
时事政治
星座占卜
幽默笑话
独立短篇
连载作品
文化历史
科技互联网
发布位置
广东
北京
山东
江苏
河南
浙江
山西
福建
河北
上海
四川
陕西
湖南
安徽
湖北
内蒙古
江西
云南
广西
甘肃
辽宁
黑龙江
贵州
新疆
重庆
吉林
天津
海南
青海
宁夏
西藏
香港
澳门
台湾
美国
加拿大
澳大利亚
日本
新加坡
英国
西班牙
新西兰
韩国
泰国
法国
德国
意大利
缅甸
菲律宾
马来西亚
越南
荷兰
柬埔寨
俄罗斯
巴西
智利
卢森堡
芬兰
瑞典
比利时
瑞士
土耳其
斐济
挪威
朝鲜
尼日利亚
阿根廷
匈牙利
爱尔兰
印度
老挝
葡萄牙
乌克兰
印度尼西亚
哈萨克斯坦
塔吉克斯坦
希腊
南非
蒙古
奥地利
肯尼亚
加纳
丹麦
津巴布韦
埃及
坦桑尼亚
捷克
阿联酋
安哥拉