陈江照&李美成&何冬梅&张甲甲Angew:分子络合策略同时抑制多层离子迁移以实现认证效率为25.59%的正式钙钛矿太阳能电池

文摘   2024-11-09 08:00   福建  

Li+、I-和Ag的迁移和扩散阻碍了长期运行稳定的钙钛矿太阳能电池(PSCs)的实现。鉴于此,昆明理工大学陈江照教授、何冬梅教授、华北电力大学李美成教授和阜阳师范大学张甲甲副教授等人报道了一种多功能通用的分子络合策略,通过直接将双(2,4,6-三氯苯基)草酸盐(TCPO)掺入空穴传输层(HTL),同时抑制Li+、I-和Ag的迁移,最终同时稳定HTL、钙钛矿层和Ag电极。
同时,TCPO掺杂提高了HTL的空穴迁移率、改善了能带排列和钝化了界面缺陷,从而促进空穴抽取并最小化非辐射复合损失。TCPO掺杂的正式器件实现了25.68%的功率转换效率(PCE)(认证效率为25.59%)。未封装的TCPO掺杂器件在一个太阳光照下连续运行730小时后保留其初始效率的90%以上,在30%相对湿度下储存2800小时后保留其初始效率的90%以上,在65 °C老化1200小时后保持其初始效率的90%以上,这是正式PSC报道的最佳稳定性之一。
该工作为通过合理设计多功能配体分子和主客体络合策略提高PSC的PCE和长期稳定性提供了一种新方法。

Figure 1. Theoretical insights into inhibition mechanisms of mobile Li+ ions. (a) ESP images of TCB, OA, and TCPO. Molecular structures (b) and binding energies (c) of Li+with TCB, OA, and TCPO calculated and optimized using density functional theory. (d) Design thought of TCPO ligand molecules used for host-guest complexation interaction.

Figure 2. Promoted p-doping by TCPO and chemical interaction of TCPO with Li+ ion. (a) ESR spectra of Spiro, Spiro-TCPO, Spiro-Li, and Spiro-Li-TCPO solutions. (b) UV-visible absorption spectra of Spiro, Spiro-TCPO, Spiro-Li and Spiro-Li-TCPO films. (c) Cyclic voltammograms of Spiro, Spiro-TCPO, Spiro-Li, and Spiro-Li-TCPO. (d) FTIR spectra of Li-TFSI, TCPO and TCPO-Li-TFSI in the wavenumber range of 1600-2000 cm-1. (e) 7Li NMR of Li-TFSI solutions with and without TCPO. (f) 13C NMR of TCPO solutions with and without Li-TFSI. (g) Schematic illustration of the mechanisms of p-doping promotion and Li+ migration suppression via TCPO.

Figure 3. Characterization of HTLs without and with TCPO. AFM (a) and c-AFM (b) images of pure Spiro, Spiro-TCPO, Spiro-Li, and Spiro-Li-TCPO. The size of the images is 2×2 μm2. Conductivities (c) and hole mobilities (d) of pure Spiro, Spiro-TCPO, Spiro-Li, and Spiro-Li-TCPO. PL (e) and TRPL (f) spectra of perovskite films coated with Spiro-Li and Spiro-Li-TCPO films on glass substrates. PVSK stands for perovskite. (g) Energy level arrangement of Spiro-Li films with and without TCPO.

Figure 4.Simultaneous suppression of Li+, I- and Ag migration via host-guest complexation. (a) Photographs of the perovskite films with Spiro-Li (control) and Spiro-Li-TCPO (target) under damp and heat environment (temperature 85 ℃, relative humidity 61%) after aging for 1, 2, 4, 6 and 8 days. (b) Water contact angles of the perovskite films with Spiro-Li and Spiro-Li-TCPO. (c) Cross-sectional SEM images of the perovskite films with Spiro-Li and Spiro-Li-TCPO under damp and heat environment (temperature 85 ℃, relative humidity 61%) before and after aging for 8 days. (d)TOF-SIMS for the control and target devices after exposing to one sun and heating at 65 °C for 8 days. (e) TOF-SIMS 3D reconstruction of CsAg+, Cs2I-and Li+ ions. (f)Schematic diagram of suppressing I-, Li+, and Ag migration through TCPO.

Figure 5.Photovoltaic performance and long-term stability of devices without and with TCPO. (a) J-V curves of the best-performing devices without and with TCPO. (b) J-V curves of the champion control and target devices with an active area of 1 cm2. (c) J-V curves of the best-performing devices without and with TCPO prepared using a two-step perovskite deposition approach (active area 0.08 cm2). (d) Comparison of the PCEs for our device and reported highly efficient n-i-p structure PSCs. TPC (e) and TPV (f) curves for the control and target devices. (g) Humidity stability of the control and modified PSCs in a light-shielded environment at 25-35% relative humidity. (h) Operation stability of the unencapsulated control and target devices at MPP under continuous 1 sun irradiation. (i) Thermal stability of the unencapsulated control and modified devices heated at 65 °C in a dark nitrogen glove box.

Qian Zhou#, Yingying Yang#, Dongmei He*, Ke Yang, Yue Yu, Xinxing Liu, Jiajia Zhang*, Xuxia Shai, Jinsong Wang, Jianhong Yi, Meicheng Li*, Jiangzhao Chen*. Simultaneous suppression of multilayer ion migration via molecular complexation strategy toward high-performance regular perovskite solar cells. Angew. Chem. Int. Ed.2024, e202416605.

https://onlinelibrary.wiley.com/doi/10.1002/anie.202416605


学术交流QQ群

知光谷光伏器件学术QQ群:641345719

钙钛矿产教融合交流@知光谷(微信群):需添加编辑微信

为加强科研合作,我们为海内外科研人员专门开通了钙钛矿科创合作专业科研交流微信群加微信群方式:添加编辑微信 pvalley2024、pvalley2019,备注:姓名-单位-研究方向(无备注请恕不通过),由编辑审核后邀请入群。

知光谷
我为光伏发光,新型光伏第一号
 最新文章