Pivottablejs
pivot_ui函数可以自动从DataFrame生成交互式用户界面,使用户可以简单地修改,检查聚合项,并快速轻松地更改数据结构。
!pip install pivottablejs
from pivottablejs import pivot_ui
import pandas as pd
data = pd.read_csv("D:\Data\company_unicorn.csv")
data["Year"] = pd.to_datetime(data["Date Joined"]).dt.year
pivot_ui(data)
如下图所示,我们可以直接在notebook中对DataFrame进行筛选,生成图表
我们还可以快速生成数据透视表
Pygwalker
PyGWalker可以把DataFrame变成一个表格风格的用户界面,让我们直观有效地探索数据。
这个包的用户界面对Tableau用户来说很熟悉,如果你用过Tableau那么上手起来就很容易
!pip install pygwalker
import pygwalker as pyw
walker = pyw.walk(data)
通过一些简单的拖拽,可以进行筛选和可视化,这是非常方便的。
Qgrid
除了PyGWalker之外,Qgrid也是一个很好的工具,它可以很容易地将DataFrame架转换为视觉上直观的交互式数据表。
import qgrid
qgridframe = qgrid.show_grid(data, show_toolbar=True)
qgridframe
我们还可以直接在表上添加、删除数据。
Itables
与上面提到的qgrid包一样,Itables提供了一个简单的接口。可以进行简单的操作,如过滤、搜索、排序等。
from itables import init_notebook_mode, show
init_notebook_mode(all_interactive=False)
show(data)
tables和Qgrid包对于快速查看数据模式是必要的。然而,如果我们想要进一步理解数据并进行数据转换,它们的特征是不够的。因此,在获得更复杂的见解的情况下,使用透视表js和Pygwalker是可取的。