【数据分享】全球含建筑高度的建筑物数据(shp格式\约15亿栋建筑物)

文摘   2024-08-23 17:40   上海  
建筑数据是我们在各项研究中经常使用到的数据。之前我们能获取到的建筑数据大多没有建筑高度信息,而建筑高度是建筑数据最重要的属性。之前我们给大家分享了我国分城市的含建筑高度的建筑物数据(戳我跳转),本次我们继续给大家分享全球含建筑高度的建筑物数据。

该数据格式为shp矢量格式数据坐标为WGS1984坐标数据发布时间是2024年5月。数据本身的日期为2020年。数据发布于Zenodo数据库与数据配套的论文为3D-GloBFP: the first global three-dimensional building footprint dataset》。


大家在公众号回复关键词 315 按照转发要求获取数据!以下为数据的详细介绍:


01

数据预览

我们以中国上海市的数据为例来预览一下,首先我们看一看二维建筑轮廓数据:

上海市建筑轮廓数据


下图为数据属性表的预览,表中Height”为建筑高度数据,数据单位为米。


然后我们来看一看拉伸建筑高度后的三维数据:

上海市主城区建筑三维数据


02

数据详情

数据简介:

该数据包括建筑轮廓矢量建筑高度信息研究者首先收集到建筑轮廓矢量数据、多源遥感数据 和可获得的建筑高度数据。通过已知建筑高度数据和多源遥感数据训练模型,进而估计得到2020年的建筑高度数据。

建筑轮廓矢量来源于微软建筑物轮廓数据集(Microsoft, 2018)和 Shi 等人(2024)提供的建筑边界数据集。微软建筑物数据集提供了大约 2020 年全球的 13 亿个建筑物轮廓。东亚的一些地区(如中国、朝鲜和韩国)未包含在微软建筑物轮廓数据集中,研究者使用了 Shi 等人(2024)基于2020-2022年谷歌影像使用深度学习方法提取的建筑物轮廓作为替代。

建筑高度信息为研究者通过集成多源遥感特征(SAR 图像、光学图像、地形图像以及反映人口和社会经济活动的图像)和建筑物形态特征,借助 GEE 平台从多源数据集(即雷达、光学、地形、社会经济和矢量)中提取175个模型的输入特征,使用XGBoost机器学习回归方法来估算2020年的建筑物高度。其中遥感影像采用2020年的数据,图像缺失的区域用2019年和 2021年的数据补充。

另外,作为训练数据集的全球已知建筑高度数据来自于ONEGEO Map (https://onegeo.co/data/)、微软建筑物足迹 (Microsoft,2018)、百度地图(https://map.baidu.com/)和 EMU Analytics (https://www.emu-analytics.com/)。

数据详情:

数据来源:Zenodo数据库

https://zenodo.org/records/11397015(亚洲)

https://zenodo.org/records/11391077(欧洲)

https://zenodo.org/records/11319913(美洲、非洲和大洋洲)

数据格式:

Shp

空间范围:

全球(亚洲、欧洲、美洲和大洋洲)

地理坐标系:

WGS 1984

数据大小:

解压后数据大小为88.4GB

数据引用:

欧洲数据的引用:

Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., & Dai, Y. (2024). Building height of Europe in 3D-GloBFP [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11391077

亚洲数据的引用:

Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., & Dai, Y. (2024). Building height of Asia in 3D-GloBFP [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11397015

美洲、非洲和大洋洲数据的引用:

Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., & Dai, Y. (2024). Building height of the Americas, Africa, and Oceania in 3D-GloBFP [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11319913

论文引用:
Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., Yuan, H., and Dai, Y.: 3D-GloBFP: the first global three-dimensional building footprint dataset, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-217, in review, 2024.


03

数据获取 


在公众号回复关键词
315

按转发要求获取

全球范围含建筑高度的建筑物数据


-----------关注公众号----------

立方数据学社
公众号持续分享各类开源城市数据!目前已分享几百种数据!
 最新文章