Nature重磅:AI化学家再升级!大幅提升实验效率,推动化学合成进入“智能化”新阶段

科技   2024-11-08 17:32   广东  
来源: 学术头条

作者: 田小婷  审核:学术君

人工智能(AI)驱动的机器人,正在我们的生活中扮演着越来越重要的角色,而在化学合成实验室内,它们也在悄然改变着传统实验方式。

如今,科学家们在智能化学领域取得了新突破——

来自英国利物浦大学的研究团队开发了一种“智能实验室”——模块化的移动机器人平台,它可以在实验室中自由移动、自动添加试剂,还能自助分析数据、筛选结果,尤其在使用有机溶剂和处理危险试剂的实验中表现出色。

值得一提的是,这项新研究基于“世界上第一个移动机器人化学家”,该机器人化学家在 8 天内进行了近 700 次催化实验,全天候不停歇工作。

研究团队展示了该系统在超分子化学和药物化学等领域的应用,大幅提升了实验效率,推动化学合成进入一个“智能化”的新阶段,为探索化学反应机制和开发新药物带来了全新的可能。

研究发现,这一由 AI 驱动的移动机器人不仅能够做出与人类研究人员相同或相似的决策,而且速度比人类要快得多。

“它可以处理分析数据集,然后做出自主决策 — 例如,是否继续进行反应的下一步。这个决定基本上是即时的,所以如果机器人在凌晨 3:00 进行分析,那么它将在凌晨 3:01 决定进行哪些反应。相比之下,人类化学家可能需要几个小时后才能浏览相同的数据集。” 该论文的共同第一作者 Sriram Vijayakrishnan 解释道。

“我在读博时,很多化学反应都是手工完成的。通常,收集和分析数据所花的时间和搭建实验的时间一样长。当你开始实现化学自动化时,这个数据分析问题就变得更加严重了,你可能会被数据淹没。” Vijayakrishnan 博士说。

相关研究论文以 “Autonomous mobile robots for exploratory synthetic chemistry” 为题,已于今天发表在权威科学期刊 Nature 上。


对此,该论文的通讯作者、利物浦大学化学系教授 Andrew Cooper 表示:“无论是在物理实验方面,还是在决定接下来要做哪些实验方面,化学合成研究都既耗时又昂贵,智能机器人为加速这一进程提供了一种途径。”


模块化与智能化的完美融合


在传统的化学合成中,复杂的实验往往涉及多种试剂和步骤,需要高度精准的手动操作,才能避免实验中出现意外,不仅危险而且繁琐,数据分析也极具挑战性。很多时候,实验进展受限于人力与条件,让化学研究者们在探索未知世界时步履维艰。

随着自动化和人工智能技术不断向化学研究领域渗透,机器人逐渐走进实验室,承担起部分合成和分析任务。然而,现有的静态机器人平台缺乏灵活性,难以满足多步骤化学反应的复杂要求。

为此,研究团队开发了一个由多模块单元组成的高度集成且智能化的化学实验平台,为机器人赋予更高的灵活性。

该系统基于 KUKA 机器人平台构建,定位精度可达 ±0.12 毫米,并配备了激光扫描仪和力传感器等各种传感器,能精确完成实验室操作。

图|用于移动 agent 处理的定制核磁共振机架。左图:组装好的机架预先装有核磁共振管,并放置在 ISynth 平台内,然后液体输送工具将液体分配到管子中,管子有带孔的盖子,以便分配。右图:NMR-Agent 使用定制的指尖,使其能够垂直和水平地抓握和移动机架。垂直握把方向用于从 ISynth 甲板上取下机架,水平握把方向用于将机架移入台式核磁共振自动采样器。

系统的核心控制单元是智能自动化系统控制面板(IAS - CP),采用 ZeroMQ 通信协议,可以将实验室的各种仪器模块(如合成反应平台、UPLC–MS(超高效液相色谱—质谱)和 NMR(核磁共振)等)无缝连接,实现实验数据的实时传输与自主分析。

IAS-CP 可通过广播向各实验模块传递指令,对多台仪器进行高效调度,灵活控制实验进程,且支持非专业用户进行简单操作,这种灵活性使其在多步骤化学反应中的应用能力大大提升。

图|模块化机器人工作流程和启发式反应规划器



不止是实验执行者,更是数据分析师


在这项研究中,整个实验流程中,IAS-CP 控制机器人完成从试剂添加到溶剂蒸发、搅拌加热等操作。机器人会实时取样,将样品送至 UPLC–MS 和 NMR 等分析仪器进行监测,并通过启发式算法筛选合适的化合物,进一步进行反应或分析,构建出接近自主探索的工作流程。

应用于超分子化学和药物化学的筛选

在超分子化学的实验中,这一机器人系统展现出了强大的筛选能力。

超分子化学研究的对象是多个分子通过非共价相互作用形成的复杂体系。这类实验往往生成多种混合分子结构,且分子结构和性质具有高度的多样性和复杂性。

研究团队通过启发式筛选算法结合超高效液相色谱 - 质谱(UPLC - MS)和核磁共振(NMR)两种分析手段,成功识别出多个具有潜在价值的分子结构。

在某些情况下,尽管分子在 UPLC–MS 测试中未通过,NMR 的分析结果却显示其具有独特的研究价值。系统得以迅速捕获这些“异常分子”,为后续研究提供了新的线索。

尤其是在超分子自组装研究中,这种筛选能力有助于发现具有新型功能的超分子结构,为材料开发、药物递送载体设计等提供了新的思路。

该机器人系统也应用于一系列药物分子的多样化实验,为药物研发带来了新的可能性。

在药物合成过程中,精确的试剂添加、加热和溶剂蒸发操作对于生成优质产物至关重要。系统通过智能化的筛选机制,在实验过程中实时评估产物质量,自动筛选出符合标准的化合物,及时终止不合格实验,节省时间和资源。

研究团队发现,在某些药物前体分子的合成实验中,系统检测到了特定反应条件下的意外分子结构。这种新结构可能具备更好的药理活性或药代动力学性质,为新药开发提供了有力的线索。

启发式算法:智能决策的核心

与传统的机器学习模型不同,该系统采用了启发式算法,将化学家们长期积累的专业知识巧妙地融入到决策流程中,使系统在处理化学实验问题时具有独特的优势。

在化学研究中,因数据稀缺,传统机器学习模型难以捕捉复杂的化学模式,而启发式算法通过一系列基于化学知识的规则,使系统能在数据有限的条件下做出合理决策。例如在金属有机化合物实验中,算法会根据金属价态调整反应条件,为系统构建了“化学地图”,让机器人在复杂的化学空间中迅速定位实验路径。

当然,启发式算法也存在一定的“确认偏差”风险——系统过度依赖预设规则,可能遗漏一些特殊情况。但在数据不足的化学领域,它无疑是一种高效、实用的解决方案。启发式算法为系统的决策过程提供了透明度,研究人员可以清晰地理解每一步操作背后的化学逻辑。

图|超分子主客体系统的自主发现

实验数据的存储与追溯:构建化学知识宝库

在这个机器人系统中,数据管理是一个至关重要的环节。而数据存储功能也是该系统的一大亮点。

系统完整保存了每次实验数据,特别是那些“失败”实验中的宝贵信息,包括反应条件、产物信息等,便于后续分析。研究人员可以从历史数据中总结实验步骤中的潜在问题,为未来的实验优化提供依据,这种“从失败中学习”的能力,使得系统不断完善,推动化学研究向前发展。


不足与展望


尽管研究展示了系统在化学合成中的巨大潜力,但其对实验结果的综合判断能力仍无法完全替代人类化学家。

特别是在识别超出其知识体系的新型分子结构时,系统的准确性仍有待提升。此外,对于复杂拓扑结构或动态分子,UPLC–MS和NMR的解析能力存在局限性,影响了机器人在更广泛研究领域的应用。

论文的作者之一、该项目的负责人 Andrew Cooper教授说:“机器人情境理解的广度不如一名训练有素的研究人员,所以就目前的形势而言,它不会有‘恍然大悟’的时刻。但就我们在这里交给它的任务而言,人工智能逻辑在这三个不同的化学问题上做出的决策,与化学合成家或多或少是相同的,而且它能在眨眼之间做出这些决策。通过使用大型语言模型将其与相关科学文献直接关联等方式,也有很大的空间来拓展人工智能的情境理解能力。”

未来,研究团队计划通过引入更高精度的仪器,如高场自动化NMR,提升系统的分子结构解析能力。

此外,研究团队还考虑引入数据挖掘和文本分析技术,将文献中的实验数据整合到算法中,提升决策准确性。此外,借助大型语言模型构建更友好的人机界面,使非专业用户也能轻松操作系统。

除了化学合成领域,这一系统的模块化设计与自主探索机制还具备更广泛的应用潜力。生物化学、材料科学等领域同样需要复杂的多步骤实验,机器人可以充当“实验助理”,为科研人员节省时间。未来,工业实验室或可借助此类机器人构建分布式的自动化实验网络,实现跨楼层、跨建筑的化学探索与分析。

随着技术进步,自主机器人将逐渐成为化学家的“智能助手”,带来更多高效、可靠的实验方法,引领化学研究的新纪元。


阅读最新前沿科技研究报告,欢迎访问欧米伽研究所的“未来知识库”


未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料欢迎扫描二维码或点击本文左下角“阅读原文”进入。



截止到10月25日 ”未来知识库”精选的100部前沿科技趋势报告


接下来,我们将为您逐一展示这100部精选报告的完整标题列表。

1. 牛津大学博士论文《深度具身智能体的空间推理与规划》230页

2. 2024低空经济场景白皮书v1.0(167页)

3. 战略与国际研究中心(CSIS)人类地月空间探索的总体状况研究报告(2024)

4. 人工智能与物理学相遇的综述(86页)

5. 麦肯锡:全球难题,应对能源转型的现实问题(196页)

6. 欧米伽理论,智能科学视野下的万物理论新探索(50页报告)

7. 《美国反无人机系统未来趋势报告(2024-2029 年)》

8. Gartner 2025 年主要战略技术趋势研究报告

9. 2024人工智能国外大模型使用手册+中文大模型使用手册

10. 详解光刻巨人ASML成功之奥妙-241015(94页)

11. CB Insights:未来变革者:2025年九大科技趋势研究报告

12. 国际电信联盟2023-2024年联合国人工智能AI活动报告388页

13. 《人工智能能力的人类系统集成测试和评估》最新51页,美国防部首席数字和人工智能办公室(CDAO)

14. 2024瑞典皇家科学院诺贝尔化学奖官方成果介绍报告

15. MHP:2024全球工业4.0晴雨表白皮书

16. 世界经济论坛白皮书《AI价值洞察:引导人工智能实现人类共同目标》

17. 瑞典皇家科学院诺贝尔物理学奖科学背景报告资料

18. AI智能体的崛起:整合人工智能、区块链技术与量子计算(研究报告,书)

19. OpenAI o1 评估:AGI 的机遇和挑战(280页)

20. 世界知识产权组织:2024 年全球创新指数(326页)

21. 美国白宫:国家近地天体防御策略与行动计划

22. 【CMU博士论文】持续改进机器人的探索,243页

23. 中国信通院:量子计算发展态势研究报告2024年58页

24. 2024年OpenAI最新大模型o1革新进展突出表现及领域推进作用分析报告

25. 【新书】通用人工智能,144页

26. 联合国:《未来契约》、《全球数字契约》和《子孙后代问题宣言》三合一

27. 世界气候组织:2024团结在科学中,守卫地球系统的未来

28. 世界经济论坛 《量子技术助力社会发展:实现可持续发展目标》研究报告

29. 人工智能科学家:迈向全自动开放式科学发现

30. 欧盟:石墨烯旗舰项目十年评估报告

31. 美国信息技术和创新基金会:美国的数字身份之路研究报告

32. 麦肯锡:2024能源转型挑战未来研究报告

33. 联合国贸易与发展会议:2024世界投资报告

34. 兰德:评估人工智能对国家安全和公共安全的影响

35. 兰德:2024评估人工智能基础模型市场的自然垄断条件

36. 经合组织:2015-2022 年生物多样性与发展融资

37. ITIF:中国半导体创新能力研究报告

38. 英国皇家学会:数学未来计划, 数学和数据教育的新方法研究报告

39. 欧盟:10年人类大脑计划创新评估报告

40. GLG格理集团:2024深度解读半导体行业关键趋势和专家洞见报告15页

41. 华为智能世界2030报告2024版741页

42. 联合国:2024为人类治理人工智能最终报告

43. 达信Marsh:2024全球科技产业风险研究报告英文版27页

44. 鼎帷咨询:2024英伟达人工智能发展战略研究报告149页

45. 【博士论文】大语言模型的测试与评价:准确性、无害性和公平性,223页pdf

46. 麦肯锡:2024世界能源产业展望

47. 世界经济论坛《太空:全球经济增长的 1.8 万亿美元机遇》

48. 世界经济论坛:世界“技术先锋”名单100家公司名单

49. 世界经济论坛:2024绘制地球观测的未来:气候情报技术创新

50. 核聚变技术作为清洁能源供应替代来源的全球发展和准备情况

51. 大模型生成的idea新颖性与人类对比研究报告(94页)

52. IQM :2024 年量子状况报告

53. 2024十大新兴技术研究报告

54. 2024地球观测 (EO) 洞察带来的全球价值(58页)

55. 2023-2024世界基础设施监测报告

56. 世界银行:2024世界发展报告,中等收入陷阱

57. 2024国际前沿人工智能安全科学报告132页

58. 斯坦福大学2024人工智能指数报告

59. 美国总统科学技术顾问委员会:《利用人工智能应对全球挑战》63页报告

60. 柳叶刀行星健康:2024地球系统安全与健康评估报告

61. 中国未来50年产业发展趋势白皮书III

62. OpenAI o1系列产品原理与安全最新研究报告(80页)

63. 国家互联网信息办公室:国家信息化发展报告2023年110页

64. 埃森哲:2024年风险研究报告-重大颠覆需要持续重塑英文版39页

65. 36氪研究院:2024年中国城市低空经济发展指数报告41页

66. 美国信息技术与创新基金会:《中国在量子领域的创新能力如何》研究报告

67. 理解深度学习500页报告

68. 鼎帷咨询:2024全球人工智能发展研究报告44页

69. 【伯克利博士论文】大型语言模型迈向能够学习和发现一切的机器

70. 《量子技术:前景、危险和可能性》45页报告

71. 英国皇家学会报告:人工智能在科学、技术、工程和数学领域的应用

72. 未来今日研究所:2024世界技趋势报告(980页)

73. 面向大规模脉冲神经网络:全面综述与未来方向

74. 大模型+知识库市场全景报告

75. 《太空力量的理论基础:从经济学到不对称战争》2024最新94页报告

76. CBInsights:2024年第二季度全球企业风险投资状况报告英文版124页

77. 英国科学院:数据管理和使用:21 世纪的治理(2024),99页

78. 兰德智库:展望2045 一项前瞻性研究探讨未来 20 年全球趋势的影响

79. 世界知识产权组织:2024年世界知识产权报告:让创新政策促进发展

80. 全球灾难风险研究所:评估大型语言模型接管灾难的风险

81. 牛津马丁学院:人工智能风险国际科学评估的未来

82. 联合国贸易和发展署:2024世界投资报告

83. 兰德公司:人工智能军事应用的新风险和机遇

84. 英国皇家学会:AI时代的科学发展趋势研究报告

85. 百页风电行业研究方法论:从中国到世界从陆地到海洋-240902,98页

86. 中国信通院发布《大模型落地路线图研究报告(2024年)》

87. 星河智源:2024年无人驾驶技术全景报告35页

88. 星河智源:2024年光刻机技术全景报告37页

89. 人形机器人行业研究方法论:特斯拉领衔人形机器人的从1到N

90. 兰德:展望2045一项关于未来20年全球趋势影响的前瞻性研究报告英文版45页

91. 《军事创新与气候挑战》2024最新152页报告

92. 麦肯锡:2024困难点:驾驭能源转型的物理现实(196页)

93. 《麻省理工科技评论》万字长文:什么是人工智能?

94. 软件与服务行业:从特斯拉智能驾驶看人形机器人发展路径

95. 中国信通院:中国数字经济发展研究报告2024年82页

96. CB Insights:2024年第二季度全球风险投资状况报告 244页

97. 脑启发的人工智能:全面综述

98. 二十年关键技术跟踪报告

99. 中国首部城市大脑系列建设标准(8项)汇编

100. 麦肯锡2024技术趋势展望报告100页

人工智能学家
致力成为权威的人工智能科技媒体和前沿科技研究机构
 最新文章