力维智联入选《2024爱分析·大模型+知识库市场全景报告》

财富   2024-08-15 16:59   广东  


知识库是企业的智慧中枢,汇集了企业经营经验、流程、文献、政策、机理、模型等各类主题内容,承担着提高员工生产力、促进组织协作与创新的重要功能。

企业普遍已经积累了丰富的知识沉淀,如何提高对知识的高效分享、精准应用成为限制知识库价值发挥的“关卡”。进入数字时代后,企业对知识库应用的技术发展推动知识库形态持续迭代,历经数字知识库、智能知识库1.0等阶段后,最终进入融合大模型能力的智能知识库2.0阶段。

大模型+知识库同时具备大模型强大的知识整合和推理能力、准确理解用户意图、使用自然语言的交互、极强的泛化能力,以及知识图谱、RAG检索增强生成等技术使企业知识应用变得更简单、高效和广泛。

同时,大模型+知识库因其成本低、周期短,成为大模型落地的优先场景,并在金融、政务、电信三个领域中率先落地。这三个领域知识繁杂,内部员工使用频繁,且均需面向外部用户提供咨询服务支持,内外需求驱动业内机构快速落地大模型+知识库,如金融应用场景以智能客服、智能投顾、智能报告生成为代表,政务领域应用场景如12345热线、政策标准知识库搜索等。

覆盖市场:
  大模型+知识库

注:扫描下图二维码或点击文末左下角“阅读原文”,可下载完整版《2024爱分析·AI+知识库厂商全景报告》





01
研究范围定义
研究范围定义
知识库是企业的智慧中枢,汇集了企业经营经验、流程、文献、政策、机理、模型等各类主题内容,承担着提高员工生产力、促进组织协作与创新的重要功能。

1)大模型+知识库实现对企业知识的深度应用

企业普遍已经积累了丰富的知识沉淀,如何提高对知识的高效分享、精准应用成为限制知识库价值发挥的“关卡”。进入数字时代后,企业对知识库应用的技术发展推动知识库形态持续迭代,历经数字知识库、智能知识库1.0等阶段后,最终进入融合大模型能力的智能知识库2.0阶段。

图1:企业知识库技术发展历程

在大模型出现之前,虽然企业对知识库的利用技术一直在改进,但对知识库的价值挖掘仍然处于较低水平。如数字知识库阶段,企业普遍以电子文档形式存储知识,并建立知识管理系统供员工使用。此阶段实现知识的线上化,但各业务分别建立知识库形成知识孤岛,无法形成企业级知识库,且员工难以准确定位需要的知识,对于客服等业务应用的支撑有限。
随后,知识图谱、NLP等AI技术的成熟推动企业进入智能知识库1.0阶段。这个阶段中,知识库的存储内容更丰富,在电子文档基础上增加了图片、语音、视频等模态,知识库的应用也更便捷,员工能通过智能搜索、智能问答、智能推荐等形式获取一定知识。智能知识库1.0阶段对知识的挖掘应用更深入,但也带来了巨大的构建和运维成本,如企业需要人工整理问答对,话术师冷启动周期长,不同场景需要使用不同小模型,维护成本高。此外,基于知识图谱的智能知识库交互能力弱,回答内容和话术流程由话术师配置,难以准确理解用户意图,无法回答配置内容之外的个性化提问,用户体验较差。
2023年以来,大模型技术快速发展,其强大的知识整合和推理能力、准确理解用户意图、使用自然语言的交互、极强的泛化能力等特点能有效解决之前阶段出现的知识孤岛、用户体验、个性化提问、跨场景使用等痛点,同时,知识图谱、RAG检索增强生成等技术又能解决大模型幻觉问题,保证大模型输出的可信性,使企业知识应用变得更简单、高效和广泛,使用场景迅速扩充到企业的生产、销售、营销、客服、IT等各个环节。企业知识库进入智能知识库2.0阶段,
2) 内外服务需求推动金融、政务、电信三大行业大模型+知识库率先落地
人工智能已经成为科技革命和产业变革的核心驱动力,在政府对人工智能产业发展的大力支持下,各行业开始进行试点,其中大模型+知识库因其成本低、周期短,成为大模型落地的优先场景。
在各行业中,金融、政务、电信是大模型+知识库应用最领先的三个领域。以上三领域知识繁杂,内部员工使用频繁,且均需面向外部用户提供咨询服务支持,内外需求驱动业内机构快速落地大模型+知识库,如金融应用场景以智能客服、智能投顾、智能报告生成为代表,政务领域应用场景如12345热线、政策标准知识库搜索等。
此外,教育、医疗、工业、能源等行业领先企业也在试点大模型+知识库,主要满足内部员工使用需求。如教育行业的智能教学、个性化学习推荐,医疗领域的药物研发、就医知识库等场景。
爱分析认为,大模型+知识库解决方案包含基础设施层如湖仓一体、向量数据库、图数据库、GPU,模型层包含模型资源,中间层包含模型运营及图谱构建,应用层包含知识库问答、智能客服、数字办公、流程自动化等。
基于以上背景,本报告面向企业管理层和全体员工,通过对大模型+知识库的需求定义和代表厂商的能力评估,为企业落地大模型+知识库解决方案、厂商选型提供参考。

图2:大模型+知识库市场全景地图

厂商入选标准:
厂商入选标准本次入选报告的厂商需同时符合以下条件:
1、厂商的产品服务满足各市场定义的厂商能力要求;
2、2023年厂商具备一定数量以上的付费客户(参考第3章各市场定义部分);
02

厂商全景地图


03

市场分析与厂商评估

3.1大模型+知识库

市场定义:

大模型+知识库是指将大模型与知识库相结合,改变原有的知识库建设、应用与运营的方式,致力于更好地支撑企业管理层及全体员工的知识检索与应用需求。

甲方终端用户:

企业管理层及全体员工

甲方核心需求:
大模型技术日益成熟,企业大模型应用场景加速落地。知识库作为企业持续沉淀的数据资产,为大模型落地提供天然的数据基础,因此知识库成为企业大模型率先落地场景。企业对大模型+知识库的核心需求包括:
实现知识管理全流程的智能化。企业知识库管理全流程涵盖采集、入库、构建、应用等,传统管理流程均需要通过人工实现,效率低下且最终的知识应用价值不高。为此,企业需要基于大模型建设智能化知识管理体系。采集环节,需要对内部多个系统以及外部知识进行采集,传统人工采集的形式极易存在内外部信息不同步的情形;入库环节,需要知识库管理员手动分类、打标签、填写摘要等,对知识库管理员业务要求较高;构建环节,传统知识管理共用一套组件,难以满足不同部门差异化知识库的构建需求;应用环节,传统知识应用普遍通过企业门户由人工搜索获得,交互方式低效。
快速实现场景化知识搜索智能应用。除企业员工培训、流程检索等通用知识查询场景,企业的研发、生产、销售等场景业务属性强,需要专业精准的知识库为员工提供服务,因此,大模型+知识库解决方案应能支持企业灵活且快速地自建场景化智能应用。
实现精准、安全的知识赋能。在应用大模型的过程中,大模型幻觉将影响知识搜索准确性,直接决定员工对大模型的可信度,企业需要解决搜索精准问题。此外,融合大模型的知识库在模型部署、知识传输、知识检索等方面存在泄漏风险,如越级访问、公有大模型下的数据传输等,企业也需要保障大模型应用过程中的数据安全和合规。
厂商能力要求:
提供融入AI与大模型技术的知识库全流程智能化管理。如在采集环节,支持通过爬虫或RPA实现内外系统知识获取的同步性;在入库环节,厂商应支持智能化分类、智能打标签、摘要自动生成等,加速知识入库;在构建环节,厂商基于大模型能力自动推荐管理组件或模板,支持企业构建符合业务需求的知识库主题;在应用环节,厂商提供智能问答、智能搜索等能力,为员工提供简捷友好的知识交互形式。
支持企业自建场景化智能应用。一方面,厂商大模型+知识库解决方案应支持企业构建专属语料库,包括支持用户上传文档、问答对,并完成对内容的自动分类、自动生成知识图谱等预处理;另一方面,厂商应支持私有大模型以及公有大模型的接入、配置和管理,使企业通过简单配置即能快速生成基于专属语料库的智能应用。
具备丰富的RAG工程化经验,达到模型准确率要求。RAG是指在大语言模型推理生成答案时,额外检索调用外部的知识,然后综合其检索结果进行回答生成。RAG为大模型提供了准确、丰富、可解释的知识支撑,从而实现更准确的语义理解、答案推理以及答案解释。厂商应具备丰富的工程化经验来保障知识库问答的准确性,如多路召回、相关性排序优化等。
提供数据安全管理。厂商应支持对接私有化大模型部署,并在使用过程中,厂商应提供权限管理系统,保障知识的检索安全合规。在大模型生成结果之后,厂商应当有安全审核机制保证模型没有泄露越权数据。
入选标准:
1. 符合大模型+知识库全部厂商能力要求;
2. 近一年厂商在该市场至少服务2家企业。


04
入选厂商列表

创作团队
张扬
爱分析 联合创始人&首席分析师

孟晨静

爱分析 分析师

关于厂商全景报告
  • 爱分析厂商全景报告面向数字化市场的甲方用户,由爱分析定期撰写并公开发布,为甲方采购旅程中的数字化规划、厂商选型等环节,提供决策依据和支撑。

  • 报告提供所覆盖领域的数字化市场全景地图、特定市场分析与入选标准,以及入选厂商列表、代表厂商评估等研究成果。

  • 甲方用户可以依据入选厂商列表,拟定潜在供应商名单,并通过爱分析第三方评估,了解厂商在特定市场的产品服务优势,选择合适的厂商进行选型。

注:点击左下角“阅读原文”,下载完整版2024爱分析·AI+知识库厂商全景报告》

力维智联
领先的AIoT产品与服务提供商
 最新文章