Hi,各位朋友们,我是 KaiwuDB 高级架构师赵衎衎。
KaiwuDB 始于万物互联时代下千万条数据洪流中,我们持续打磨构造了更加灵活兼容的分布式多模架构,实现了海量异构数据高性能、低成本的集中管理... ...这些底层特性都在为后续提供更多功能和业务拓展奠定关键基础,也是赋能客户的有效支撑。但仅仅只是这些,真的够么?我想答案肯定是:No🚫
许是因我长期深耕 DB 与 AI 的核心研究工作,AI 时代下,我们究竟需要怎样的数据库令我不禁深思。KaiwuDB 前进的步伐没有止于思考,我们引入原生 AI,通过 KaiwuDB 与 AI 的双向“奔赴”,期望可以真正帮助用户减负增效。那本期,我想就 KaiwuDB 的 AI 应用思路和具体实践与大家探讨交流。
01
首先和大家聊聊 KaiwuDB 在 AI for DB 及 DB for AI 的应用思路。
数据监控调优:我们通过对数据库行为数据的采集,生成数据库本身的负载画像,基于此画像来辅助完成数据库参数自调优以及数据库设计;
数据库参数自优化:数据库以及其涉及到的组件一般较为庞大复杂,单纯依靠 DBA 显然不堪重负,为了最大化发挥数据库在多样化工作负载和硬件环境下的自身性能,此时数据库系统需借助 AI 来实现自调优;
数据库设计优化:通常在执行一条 SQL 语句时,可能还会涉及到其他信息的输入,包括统计信息、索引设计、数据分区等,这些都会影响数据库的性能。我们借助 AI 手段处理索引、统计信息、数据分区模式等,实现全局数据库优化,保证我们尽可能准确得到最优查询计划,提高查询效率。
02
为了有效解决上述问题,我们思考并尝试了诸多策略。根据优化的不同模块,我们将其划分为 Inside & Outside 两类方向。
自适应优化:根据工作负载特性调整规则和成本模型; 自适应管理:根据工作负载特性调整数据库参数和调度后台任务; 自适应执行:根据负载实时反馈动态调整执行计划,提升复杂 AP 分析场景下的查询性能; 自适应监控:根据负载历史趋势调整监控信息和统计信息的收集频率和方式。
03
整体架构介绍完毕,接下来和大家分享 KaiwuDB 已实现的几项关键 AI 自治技术,主要包括智能生命周期管理、智能预计算及智能索引。
04
<
PAST · 往期回顾
>
点击👀能源增效解决方案
点击👀工业物联网解决方案
点击👀无人化矿山解决方案