空瓶换水问题研究的是若干个空瓶换1瓶水的问题,解决此类问题需要找到本质的交换原则。
↓点击下图领取考前冲刺最后一卷↓
例1:某商店出售啤酒,规定每4个空瓶可换一瓶啤酒,张伯伯家买了24瓶啤酒,那么他家前后共能喝掉多少瓶啤酒?
A.30瓶
B.32瓶
C.34瓶
D.35瓶
【中公解析】选择B。4空瓶=1瓶啤酒=1空瓶+1个没有瓶的啤酒,因此本质的交换原则是3空瓶=1酒。再根据等量关系:喝的=买的+换的。则最多可以免费喝24+24÷3=24+8=32瓶啤酒。故本题选B。
2.根据兑换规则和喝到的水数,求至少应买多少瓶。
例2:某单位27人集体旅游时都感到口渴,他们到一商场买矿泉水,该商场正搞促销活动,凭3个空瓶可再换1瓶矿泉水。他们最少买多少瓶矿泉水才能保证每人喝到一瓶矿泉水?
A.18
B.19
C.22
D.23
【中公解析】选择A。3空瓶=1瓶矿泉水=1空瓶+1个没有瓶的矿泉水,因此本质的交换原则是2空瓶=1水。已知27人至少要买27瓶矿泉水才能保证每人喝到一瓶。可设最少买了x瓶矿泉水,再根据等量关系:喝的=买的+换的,由题意得x+x÷2=27,解得x=18。故本题选A。
这就是给大家分享的“两步法”解决空瓶换水问题,牢记“两步法”必会使你的解题思路清晰又简单,保证我们能在数量关系里面再多得几分。像这种有趣味的题目还有很多,希望各位考生可以继续探索数量关系的真面目,透过现象看本质,而不是被它“纸老虎”的外表吓退。
为大家准备了最后一卷、考前重要分析等活动
赶快一起看看吧
(广告)↓↓↓
2025国考即将考试最后一卷来帮忙
依据大纲分类研发更贴合考试内容
针对行测+申论两大科目考点预判
更有配套答案解析帮你梳理重难点
点击下方图片立即领取
↓↓↓