每月都有重磅研究,2024全年值得一读的论文都在这了

科技   2025-01-02 22:01   广东  
↑ 点击蓝字 关注极市平台
来源丨机器之心

极市导读

 

知名机器学习与 AI 研究者 Sebastian Raschka 整理了一份关于LLM 的阅读清单,清单详细介绍了每个月都有哪些重要论文产出。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

2024 年,是 AI 领域让人兴奋的一年。在这一年中,各大科技公司、机构发布了数不胜数的研究。


从年初的 Sora,到年尾 DeepSeek-V3,我们见证了 AI 一轮又一轮的轰炸,AI给我们带来了意想不到的惊喜。


在这一年中,AI 论文被源源不断的产出。对于刚刚过去的 2024 年,有哪些论文值得反复阅读?知名机器学习与 AI 研究者 Sebastian Raschka 整理了一份关于LLM 的阅读清单,清单详细介绍了每个月都有哪些重要论文产出。



原文链接:https://sebastianraschka.com/blog/2024/llm-research-papers-the-2024-list.html


一月论文


论文标题:Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models

论文链接:https://arxiv.org/abs/2401.00788


论文标题:A Comprehensive Study of Knowledge Editing for Large Language Models

论文链接:https://arxiv.org/abs/2401.01286


论文标题:LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning

论文链接:https://arxiv.org/abs/2401.01325


论文标题:Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models

论文链接:https://arxiv.org/abs/2401.01335


论文标题:LLaMA Beyond English: An Empirical Study on Language Capability Transfer

论文链接 https://arxiv.org/abs/2401.01055


论文标题:A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and Toxicity

论文链接:https://arxiv.org/abs/2401.01967


论文标题:LLaMA Pro: Progressive LLaMA with Block Expansion

论文链接:https://arxiv.org/abs/2401.02415


论文标题:LLM Augmented LLMs: Expanding Capabilities through Composition

论文链接:https://arxiv.org/abs/2401.02412


论文标题: Blending Is All You Need: Cheaper, Better Alternative to Trillion-Parameters LLM

论文链接:https://arxiv.org/abs/2401.02994


论文标题:DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

论文链接:https://arxiv.org/abs/2401.02954


论文标题:Denoising Vision Transformers

论文链接:https://arxiv.org/abs/2401.02957


论文标题:Long Context Compression with Activation Beacon

论文链接:https://arxiv.org/abs/2401.03462


论文标题:Mixtral of Experts

论文链接:https://arxiv.org/abs/2401.04088


论文标题:MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts

论文链接:https://arxiv.org/abs/2401.04081


论文标题:A Minimaximalist Approach to Reinforcement Learning from Human Feedback

论文链接:https://arxiv.org/abs/2401.04056


论文标题:RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation

论文链接:https://arxiv.org/abs/2401.04679


论文标题:Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training

论文链接:https://arxiv.org/abs/2401.05566


论文标题:Transformers are Multi-State RNNs

论文链接:https://arxiv.org/abs/2401.06104


论文标题:A Closer Look at AUROC and AUPRC under Class Imbalance

论文链接:https://arxiv.org/abs/2401.06091


论文标题:An Experimental Design Framework for Label-Efficient Supervised Finetuning of Large Language Models

论文链接:https://arxiv.org/abs/2401.06692


论文标题:Tuning Language Models by Proxy

论文链接:https://arxiv.org/abs/2401.08565


论文标题:Scalable Pre-training of Large Autoregressive Image Models

论文链接 https://arxiv.org/abs/2401.08541


论文标题:Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering

论文链接https://arxiv.org/abs/2401.08500


论文标题:RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture

论文链接:https://arxiv.org/abs/2401.08406


论文标题:ReFT: Reasoning with Reinforced Fine-Tuning

论文链接:https://arxiv.org/abs/2401.08967


论文标题:DiffusionGPT: LLM-Driven Text-to-Image Generation System

论文链接:https://arxiv.org/abs/2401.10061


论文标题:Self-Rewarding Language Models

论文链接:https://arxiv.org/abs/2401.10020


论文标题:VMamba: Visual State Space Model

论文链接:https://arxiv.org/abs/2401.10166


论文标题:Knowledge Fusion of Large Language Models

论文链接:https://arxiv.org/abs/2401.10491


论文标题:SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities

论文链接:https://arxiv.org/abs/2401.12168


论文标题:WARM: On the Benefits of Weight Averaged Reward Models

论文链接:https://arxiv.org/abs/2401.12187


论文标题:Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text

论文链接:https://arxiv.org/abs/2401.12070


论文标题:MambaByte: Token-free Selective State Space Model

论文链接:https://arxiv.org/abs/2401.13660


论文标题:SpacTor-T5: Pre-training T5 Models with Span Corruption and Replaced Token Detection

论文链接:https://arxiv.org/abs/2401.13160


论文标题:Rethinking Patch Dependence for Masked Autoencoders

论文链接:https://arxiv.org/abs/2401.14391


论文标题:Pix2gestalt: Amodal Segmentation by Synthesizing Wholes

论文链接:https://arxiv.org/abs/2401.14398


论文标题:Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities

论文链接:https://arxiv.org/abs/2401.14405


论文标题:EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty

论文链接:https://arxiv.org/abs/2401.15077


论文标题:MoE-LLaVA: Mixture of Experts for Large Vision-Language Models

论文链接:https://arxiv.org/abs/2401.15947


论文标题:Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling

论文链接:https://arxiv.org/abs/2401.16380


论文标题:KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization

论文链接:https://arxiv.org/abs/2401.18079


二月论文


论文标题:Efficient Exploration for LLMs

论文链接:https://arxiv.org/abs/2402.00396


论文标题:OLMo: Accelerating the Science of Language Models

论文链接:https://arxiv.org/abs/2402.00838


论文标题:Tiny Titans: Can Smaller Large Language Models Punch Above Their Weight in the Real World for Meeting Summarization?

论文链接:https://arxiv.org/abs/2402.00841


论文标题:Repeat After Me: Transformers are Better than State Space Models at Copying

论文链接:https://arxiv.org/abs/2402.01032


论文标题:LiPO: Listwise Preference Optimization through Learning-to-Rank

论文链接:https://arxiv.org/abs/2402.01878


论文标题:FindingEmo: An Image Dataset for Emotion Recognition in the Wild

论文链接:https://arxiv.org/abs/2402.01355


论文标题:More Agents Is All You Need

论文链接:https://arxiv.org/abs/2402.05120


论文标题:DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

论文链接:https://arxiv.org/abs/2402.03300


论文标题:MobileVLM V2: Faster and Stronger Baseline for Vision Language Model

论文链接:https://arxiv.org/abs/2402.03766


论文标题:A Phase Transition Between Positional and Semantic Learning in a Solvable Model of Dot-Product Attention

论文链接:https://arxiv.org/abs/2402.03902


论文标题:Scaling Laws for Downstream Task Performance of Large Language Models

论文链接:https://arxiv.org/abs/2402.04177


论文标题:MOMENT: A Family of Open Time-series Foundation Models

论文链接:https://arxiv.org/abs/2402.03885


论文标题:Vision Superalignment: Weak-to-Strong Generalization for Vision Foundation Models

论文链接:https://arxiv.org/abs/2402.03749


论文标题:Self-Discover: Large Language Models Self-Compose Reasoning Structures

论文链接:https://arxiv.org/abs/2402.03620


论文标题:Grandmaster-Level Chess Without Search

论文链接:https://arxiv.org/abs/2402.04494


论文标题:Direct Language Model Alignment from Online AI Feedback

论文链接:https://arxiv.org/abs/2402.04792


论文标题:Buffer Overflow in Mixture of Experts

论文链接:https://arxiv.org/abs/2402.05526


论文标题:The Boundary of Neural Network Trainability is Fractal

论文链接:https://arxiv.org/abs/2402.06184


论文标题:ODIN: Disentangled Reward Mitigates Hacking in RLHF

论文链接:https://arxiv.org/abs/2402.07319


论文标题:Policy Improvement using Language Feedback Models

论文链接:https://arxiv.org/abs/2402.07876


论文标题:Scaling Laws for Fine-Grained Mixture of Experts

论文链接:https://arxiv.org/abs/2402.07871


论文标题:Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model

论文链接:https://arxiv.org/abs/2402.07610


论文标题:Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping

论文链接:https://arxiv.org/abs/2402.07610


论文标题:Suppressing Pink Elephants with Direct Principle Feedback

论文链接:https://arxiv.org/abs/2402.07896


论文标题:World Model on Million-Length Video And Language With RingAttention

论文链接:https://arxiv.org/abs/2402.08268


论文标题:Mixtures of Experts Unlock Parameter Scaling for Deep RL

论文链接:https://arxiv.org/abs/2402.08609


论文标题:DoRA: Weight-Decomposed Low-Rank Adaptation

论文链接:https://arxiv.org/abs/2402.09353


论文标题:Transformers Can Achieve Length Generalization But Not Robustly

论文链接:https://arxiv.org/abs/2402.09371


论文标题:BASE TTS: Lessons From Building a Billion-Parameter Text-to-Speech Model on 100K Hours of Data

论文链接:https://arxiv.org/abs/2402.08093


论文标题:Recovering the Pre-Fine-Tuning Weights of Generative Models

论文链接:https://arxiv.org/abs/2402.10208


论文标题:Generative Representational Instruction Tuning

论文链接:https://arxiv.org/abs/2402.09906


论文标题:FinTral: A Family of GPT-4 Level Multimodal Financial Large Language Models

论文链接:https://arxiv.org/abs/2402.10986


论文标题:OneBit: Towards Extremely Low-bit Large Language Models

论文链接:https://arxiv.org/abs/2402.11295


论文标题:LongAgent: Scaling Language Models to 128k Context through Multi-Agent Collaboration

论文链接:https://arxiv.org/abs/2402.11550


论文标题:Reformatted Alignment

论文链接:https://arxiv.org/abs/2402.12219


论文标题:AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling

论文链接:https://arxiv.org/abs/2402.12226


论文标题:Towards Cross-Tokenizer Distillation: the Universal Logit Distillation Loss for LLMs

论文链接:https://arxiv.org/abs/2402.12030


论文标题:LoRA+: Efficient Low Rank Adaptation of Large Models

论文链接:https://arxiv.org/abs/2402.12354


论文标题:Neural Network Diffusion

论文链接:https://arxiv.org/abs/2402.13144


论文标题:YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information

论文链接:https://arxiv.org/abs/2402.13616


论文标题:LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens

论文标题:https://arxiv.org/abs/2402.13753


论文标题:Large Language Models for Data Annotation: A Survey

论文链接:https://arxiv.org/abs/2402.13446


论文标题:TinyLLaVA: A Framework of Small-scale Large Multimodal Models

论文链接:https://arxiv.org/abs/2402.14289


论文标题:Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs

论文链接:https://arxiv.org/abs/2402.14740


论文标题: Genie: Generative Interactive Environments

论文链接:https://arxiv.org/abs/2402.15391


论文标题:CARTE: Pretraining and Transfer for Tabular Learning

论文链接:https://arxiv.org/abs/2402.16785


论文标题:The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

论文链接:https://arxiv.org/abs/2402.17764


论文标题:Sora Generates Videos with Stunning Geometrical Consistency

论文链接:https://arxiv.org/abs/2402.17403


论文标题:When Scaling Meets LLM Finetuning: The Effect of Data, Model and Finetuning Method

论文链接:https://arxiv.org/abs/2402.17193


论文标题:Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models

论文链接:https://arxiv.org/abs/2402.19427


三月论文


论文标题:Learning and Leveraging World Models in Visual Representation Learning

论文链接:https://arxiv.org/abs/2403.00504


论文标题:Improving LLM Code Generation with Grammar Augmentation

论文链接:https://arxiv.org/abs/2403.01632


论文标题:The Hidden Attention of Mamba Models

论文链接:https://arxiv.org/abs/2403.01590


论文标题:Training-Free Pretrained Model Merging

论文链接:https://arxiv.org/abs/2403.01753


论文标题:Vision-RWKV: Efficient and Scalable Visual Perception with RWKV-Like Architectures

论文链接:https://arxiv.org/abs/2403.02308


论文标题:The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning

论文链接:https://arxiv.org/abs/2403.03218


论文标题:Evolution Transformer: In-Context Evolutionary Optimization

论文链接:https://arxiv.org/abs/2403.02985


论文标题:Enhancing Vision-Language Pre-training with Rich Supervisions

论文链接:https://arxiv.org/abs/2403.03346


论文标题:Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

论文链接:https://arxiv.org/abs/2403.03206


论文标题:Design2Code: How Far Are We From Automating Front-End Engineering?

论文链接:https://arxiv.org/abs/2403.03163


论文标题:ShortGPT: Layers in Large Language Models are More Redundant Than You Expect

论文链接:https://arxiv.org/abs/2403.03853


论文标题:Backtracing: Retrieving the Cause of the Query

论文链接:https://arxiv.org/abs/2403.03956


论文标题:Learning to Decode Collaboratively with Multiple Language Models

论文链接:https://arxiv.org/abs/2403.03870


论文标题:SaulLM-7B: A pioneering Large Language Model for Law

论文链接:https://arxiv.org/abs/2403.03883


论文标题:Are Language Models Puzzle Prodigies? Algorithmic Puzzles Unveil Serious Challenges in Multimodal Reasoning

论文链接:https://arxiv.org/abs/2403.03864


论文标题:3D Diffusion Policy

论文链接:https://arxiv.org/abs/2403.03954


论文标题:MedMamba: Vision Mamba for Medical Image Classification

论文链接:https://arxiv.org/abs/2403.03849


论文标题:GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection

论文链接:https://arxiv.org/abs/2403.03507


论文标题:Stop Regressing: Training Value Functions via Classification for Scalable Deep RL

论文链接:https://arxiv.org/abs/2403.03950


论文标题:How Far Are We from Intelligent Visual Deductive Reasoning?

论文链接:https://arxiv.org/abs/2403.04732


论文标题:Common 7B Language Models Already Possess Strong Math Capabilities

论文链接:https://arxiv.org/abs/2403.04706


论文标题:Gemini 1.5: Unlocking Multimodal Understanding Across Millions of Tokens of Context

论文链接:https://arxiv.org/abs/2403.05530


论文标题:Is Cosine-Similarity of Embeddings Really About Similarity?

论文链接:https://arxiv.org/abs/2403.05440


论文标题:LLM4Decompile: Decompiling Binary Code with Large Language Models

论文链接:https://arxiv.org/abs/2403.05286


论文标题:Algorithmic Progress in Language Models

论文链接:https://arxiv.org/abs/2403.05812


论文标题:Stealing Part of a Production Language Model

论文链接:https://arxiv.org/abs/2403.06634


论文标题:Chronos: Learning the Language of Time Series

论文链接:https://arxiv.org/abs/2403.07815


论文标题:Simple and Scalable Strategies to Continually Pre-train Large Language Models

论文链接:https://arxiv.org/abs/2403.08763


论文标题:Language Models Scale Reliably With Over-Training and on Downstream Tasks

论文链接:https://arxiv.org/abs/2403.08540


论文标题:BurstAttention: An Efficient Distributed Attention Framework for Extremely Long Sequences

论文链接:https://arxiv.org/abs/2403.09347


论文标题:LocalMamba: Visual State Space Model with Windowed Selective Scan

论文链接:https://arxiv.org/abs/2403.09338


论文标题:GiT: Towards Generalist Vision Transformer through Universal Language Interface

论文链接:https://arxiv.org/abs/2403.09394


论文标题:MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training

论文链接:https://arxiv.org/abs/2403.09611


论文标题:RAFT: Adapting Language Model to Domain Specific RAG

论文链接:https://arxiv.org/abs/2403.10131


论文标题:TnT-LLM: Text Mining at Scale with Large Language Models

论文链接:https://arxiv.org/abs/2403.12173


论文标题:Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression

论文链接:https://arxiv.org/abs/2403.15447


论文标题:PERL: Parameter Efficient Reinforcement Learning from Human Feedback

论文链接:https://arxiv.org/abs/2403.10704


论文标题:RewardBench: Evaluating Reward Models for Language Modeling

论文链接:https://arxiv.org/abs/2403.13787


论文标题:LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models

论文链接:https://arxiv.org/abs/2403.13372


论文标题:RakutenAI-7B: Extending Large Language Models for Japanese

论文链接:https://arxiv.org/abs/2403.15484


论文标题:SiMBA: Simplified Mamba-Based Architecture for Vision and Multivariate Time Series

论文链接:https://arxiv.org/abs/2403.15360


论文标题:Can Large Language Models Explore In-Context?

论文链接:https://arxiv.org/abs/2403.15371


论文标题:LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement

论文链接:https://arxiv.org/abs/2403.15042


论文标题:LLM Agent Operating System

论文链接:https://arxiv.org/abs/2403.16971


论文标题:The Unreasonable Ineffectiveness of the Deeper Layers

论文链接:https://arxiv.org/abs/2403.17887


论文标题:BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text

论文链接:https://arxiv.org/abs/2403.18421


论文标题:ViTAR: Vision Transformer with Any Resolution

论文链接:https://arxiv.org/abs/2403.18361


论文标题:Long-form Factuality in Large Language Models

论文链接:https://arxiv.org/abs/2403.18802


论文标题:Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models

论文链接:https://arxiv.org/abs/2403.18814


论文标题:LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning

论文链接:https://arxiv.org/abs/2403.17919


论文标题:Mechanistic Design and Scaling of Hybrid Architectures

论文链接:https://arxiv.org/abs/2403.17844


论文标题:MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions

论文链接:https://arxiv.org/abs/2403.19651


论文标题:Model Stock: All We Need Is Just a Few Fine-Tuned Models

论文链接:https://arxiv.org/abs/2403.19522


四月论文


论文标题:Do Language Models Plan Ahead for Future Tokens?

论文链接:https://arxiv.org/abs/2404.00859


论文标题:Bigger is not Always Better: Scaling Properties of Latent Diffusion Models

论文链接:https://arxiv.org/abs/2404.01367


论文标题:The Fine Line: Navigating Large Language Model Pretraining with Down-streaming Capability Analysis

论文链接:https://arxiv.org/abs/2404.01204


论文标题:Diffusion-RWKV: Scaling RWKV-Like Architectures for Diffusion Models

论文链接:https://arxiv.org/abs/2404.04478


论文标题:Mixture-of-Depths: Dynamically Allocating Compute in Transformer-Based Language Models

论文链接:https://arxiv.org/abs/2404.02258


论文标题:Long-context LLMs Struggle with Long In-context Learning

论文链接:https://arxiv.org/abs/2404.02060


论文标题:Emergent Abilities in Reduced-Scale Generative Language Models

论文链接:https://arxiv.org/abs/2404.02204


论文标题:Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks

论文链接:https://arxiv.org/abs/2404.02151


论文标题:On the Scalability of Diffusion-based Text-to-Image Generation

论文链接:https://arxiv.org/abs/2404.02883


论文标题:BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models

论文链接:https://arxiv.org/abs/2404.02827


论文标题:Cross-Attention Makes Inference Cumbersome in Text-to-Image Diffusion Models

论文链接:https://arxiv.org/abs/2404.02747


论文标题:Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences

论文链接:https://arxiv.org/abs/2404.02151


论文标题:Training LLMs over Neurally Compressed Text

论文链接:https://arxiv.org/abs/2404.03626


论文标题:CantTalkAboutThis: Aligning Language Models to Stay on Topic in Dialogues

论文链接:https://arxiv.org/abs/2404.03820


论文标题:ReFT: Representation Finetuning for Language Models

论文链接:https://arxiv.org/abs/2404.03592


论文标题:Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data

论文链接:https://arxiv.org/abs/2404.03862


论文标题:Sigma: Siamese Mamba Network for Multi-Modal Semantic Segmentation

论文链接:https://arxiv.org/abs/2404.04256


论文标题:AutoCodeRover: Autonomous Program Improvement

论文链接:https://arxiv.org/abs/2404.05427


论文标题:Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence

论文链接:https://arxiv.org/abs/2404.05892


论文标题:CodecLM: Aligning Language Models with Tailored Synthetic Data

论文链接:https://arxiv.org/abs/2404.05875


论文标题:MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies

论文链接:https://arxiv.org/abs/2404.06395


论文标题:Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models

论文链接:https://arxiv.org/abs/2404.06209


论文标题:LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders

论文链接:https://arxiv.org/abs/2404.05961


论文标题:Adapting LLaMA Decoder to Vision Transformer

论文链接:https://arxiv.org/abs/2404.06773


论文标题:Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention

论文链接:https://arxiv.org/abs/2404.07143


论文标题:LLoCO: Learning Long Contexts Offline

论文链接:https://arxiv.org/abs/2404.07979


论文标题:JetMoE: Reaching Llama2 Performance with 0.1M Dollars

论文链接:https://arxiv.org/abs/2404.07413


论文标题:Best Practices and Lessons Learned on Synthetic Data for Language Models

论文链接:https://arxiv.org/abs/2404.07503


论文标题:Rho-1: Not All Tokens Are What You Need

论文链接:https://arxiv.org/abs/2404.07965


论文标题:Pre-training Small Base LMs with Fewer Tokens

论文链接:https://arxiv.org/abs/2404.08634


论文标题:Dataset Reset Policy Optimization for RLHF

论文链接:https://arxiv.org/abs/2404.08495


论文标题:LLM In-Context Recall is Prompt Dependent

论文链接:https://arxiv.org/abs/2404.08865


论文标题:State Space Model for New-Generation Network Alternative to Transformers: A Survey

论文链接:https://arxiv.org/abs/2404.09516


论文标题:Chinchilla Scaling: A Replication Attempt

论文链接:https://arxiv.org/abs/2404.10102


论文标题:Learn Your Reference Model for Real Good Alignment

论文链接:https://arxiv.org/abs/2404.09656


论文标题:Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study

论文链接:https://arxiv.org/abs/2404.10719


论文标题:Scaling (Down) CLIP: A Comprehensive Analysis of Data, Architecture, and Training Strategies

论文链接:https://arxiv.org/abs/2404.08197


论文标题:How Faithful Are RAG Models? Quantifying the Tug-of-War Between RAG and LLMs’ Internal Prior

论文链接:https://arxiv.org/abs/2404.10198


论文标题:A Survey on Retrieval-Augmented Text Generation for Large Language Models

论文链接:https://arxiv.org/abs/2404.10981


论文标题:When LLMs are Unfit Use FastFit: Fast and Effective Text Classification with Many Classes

论文链接:https://arxiv.org/abs/2404.12365


论文标题:Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing

论文链接:https://arxiv.org/abs/2404.12253


论文标题:OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data

论文链接:https://arxiv.org/abs/2404.12195


论文标题:The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions

论文链接:https://arxiv.org/abs/2404.13208


论文标题:An Empirical Study of LLaMA3 Quantization: From LLMs to MLLMs

论文链接:https://arxiv.org/abs/2404.14047


论文标题:Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone

论文链接:https://arxiv.org/abs/2404.14219


论文标题: OpenELM: An Efficient Language Model Family with Open-source Training and Inference Framework

论文链接:https://arxiv.org/abs/2404.14619


论文标题:A Survey on Self-Evolution of Large Language Models

论文链接:https://arxiv.org/abs/2404.14662


论文标题:Multi-Head Mixture-of-Experts

论文链接:https://arxiv.org/abs/2404.15045


论文标题:NExT: Teaching Large Language Models to Reason about Code Execution

论文链接:https://arxiv.org/abs/2404.14662


论文标题:Graph Machine Learning in the Era of Large Language Models (LLMs)

论文链接:https://arxiv.org/abs/2404.14928


论文标题:Retrieval Head Mechanistically Explains Long-Context Factuality

论文链接:https://arxiv.org/abs/2404.15574


论文标题:Layer Skip: Enabling Early Exit Inference and Self-Speculative Decoding

论文链接:https://arxiv.org/abs/2404.16710


论文标题:Make Your LLM Fully Utilize the Context

论文链接:https://arxiv.org/abs/2404.16811


论文标题:LoRA Land: 310 Fine-tuned LLMs that Rival GPT-4, A Technical Report

论文链接:https://arxiv.org/abs/2405.00732


论文标题:Better & Faster Large Language Models via Multi-token Prediction

论文链接:https://arxiv.org/abs/2404.19737


论文标题:RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing

论文链接:https://arxiv.org/abs/2404.19543


论文标题:A Primer on the Inner Workings of Transformer-based Language Models

论文链接:https://arxiv.org/abs/2405.00208


论文标题:When to Retrieve: Teaching LLMs to Utilize Information Retrieval Effectively

论文链接:https://arxiv.org/abs/2404.19705


论文标题:KAN: Kolmogorov–Arnold Networks

论文链接:https://arxiv.org/abs/2404.19756


五月论文


论文标题:Is Bigger Edit Batch Size Always Better? An Empirical Study on Model Editing with Llama-3

论文链接:https://arxiv.org/abs/2405.00664


论文标题:Self-Play Preference Optimization for Language Model Alignment

论文链接:https://arxiv.org/abs/2405.00675


论文标题:A Careful Examination of Large Language Model Performance on Grade School Arithmetic

论文链接:https://arxiv.org/abs/2405.00332


论文标题:Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models

论文链接:https://arxiv.org/abs/2405.01535


论文标题:What Matters When Building Vision-Language Models?

论文链接:https://arxiv.org/abs/2405.02246


论文标题:Is Flash Attention Stable?

论文链接:https://arxiv.org/abs/2405.02803


论文标题:vAttention: Dynamic Memory Management for Serving LLMs without PagedAttention

论文链接:https://arxiv.org/abs/2405.04437


论文标题:xLSTM: Extended Long Short-Term Memory

论文链接:https://arxiv.org/abs/2405.04517


论文标题:You Only Cache Once: Decoder-Decoder Architectures for Language Models

论文链接:https://arxiv.org/abs/2405.05254


论文标题:DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

论文链接:https://arxiv.org/abs/2405.04434


论文标题:Fishing for Magikarp: Automatically Detecting Under-trained Tokens in Large Language Models

论文标题:https://arxiv.org/abs/2405.05417


论文标题:Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?

论文链接:https://arxiv.org/abs/2405.05904


论文标题:Value Augmented Sampling for Language Model Alignment and Personalization

论文标题:https://arxiv.org/abs/2405.06639


论文标题:PHUDGE: Phi-3 as Scalable Judge

论文链接:https://arxiv.org/abs/2405.08029


论文标题:RLHF Workflow: From Reward Modeling to Online RLHF

论文链接:https://arxiv.org/abs/2405.07863


论文标题:LoRA Learns Less and Forgets Less

论文链接:https://arxiv.org/abs/2405.09673


论文标题:Xmodel-VLM: A Simple Baseline for Multimodal Vision Language Model

论文链接:https://arxiv.org/abs/2405.09215


论文标题:Chameleon: Mixed-Modal Early-Fusion Foundation Models

论文链接:https://arxiv.org/abs/2405.09818


论文标题:Towards Modular LLMs by Building and Reusing a Library of LoRAs

论文链接:https://arxiv.org/abs/2405.11157


论文标题:SLAB: Efficient Transformers with Simplified Linear Attention and Progressive Re-parameterized Batch Normalization

论文链接:https://arxiv.org/abs/2405.11582


论文标题:MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning

论文链接:https://arxiv.org/abs/2405.12130


论文标题:Attention as an RNN

论文链接:https://arxiv.org/abs/2405.13956


论文标题:Dense Connector for MLLMs

论文链接:https://arxiv.org/abs/2405.13800


论文标题:AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability

论文链接:https://arxiv.org/abs/2405.14129


论文标题:SimPO: Simple Preference Optimization with a Reference-Free Reward

论文链接:https://arxiv.org/abs/2405.14734


论文标题:Instruction Tuning With Loss Over Instructions

论文链接:https://arxiv.org/abs/2405.14394


论文标题:The Road Less Scheduled

论文链接:https://arxiv.org/abs/2405.15682


论文标题:Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training

论文链接:https://arxiv.org/abs/2405.15319


论文标题:gzip Predicts Data-dependent Scaling Laws

论文链接:https://arxiv.org/abs/2405.16684


论文标题:Trans-LoRA: Towards Data-free Transferable Parameter Efficient Finetuning

论文链接:https://arxiv.org/abs/2405.17258


论文标题:VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections

论文链接:https://arxiv.org/abs/2405.17991


论文标题:LLaMA-NAS: Efficient Neural Architecture Search for Large Language Models

论文链接:https://arxiv.org/abs/2405.18377


论文标题:Contextual Position Encoding: Learning to Count What’s Important

论文链接:https://arxiv.org/abs/2405.18719


六月论文


论文标题:Show, Don’t Tell: Aligning Language Models with Demonstrated Feedback

论文链接:https://arxiv.org/abs/2406.00888


论文标题:Skywork-MoE: A Deep Dive into Training Techniques for Mixture-of-Experts Language Models

论文链接:https://arxiv.org/abs/2406.06563


论文标题:OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models

论文链接:https://arxiv.org/abs/2406.01775


论文标题:The Geometry of Categorical and Hierarchical Concepts in Large Language Models

论文链接:https://arxiv.org/abs/2406.01506


论文标题:Towards Scalable Automated Alignment of LLMs: A Survey

论文链接:https://arxiv.org/abs/2406.01252


论文标题:Scalable MatMul-free Language Modeling

论文链接:https://arxiv.org/abs/2406.02528


论文标题:Block Transformer: Global-to-Local Language Modeling for Fast Inference

论文链接:https://arxiv.org/abs/2406.02657


论文标题:Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models

 论文链接:https://arxiv.org/abs/2406.04271


论文标题:The Prompt Report: A Systematic Survey of Prompting Techniques

论文链接:https://arxiv.org/abs/2406.06608


论文标题:Transformers Need Glasses! Information Over-Squashing in Language Tasks

论文链接:https://arxiv.org/abs/2406.04267


论文标题:Are We Done with MMLU?

论文链接:https://arxiv.org/abs/2406.04127


论文标题:Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step

论文链接:https://arxiv.org/abs/2406.04314


论文标题:Boosting Large-scale Parallel Training Efficiency with C4: A Communication-Driven Approach

论文链接:https://arxiv.org/abs/2406.04594

 

论文标题:CRAG – Comprehensive RAG Benchmark

论文链接:https://arxiv.org/abs/2406.04744


论文标题:WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild

论文链接:https://arxiv.org/abs/2406.04770


论文标题:Mixture-of-Agents Enhances Large Language Model Capabilities

论文链接:https://arxiv.org/abs/2406.04692


论文标题:BERTs are Generative In-Context Learners

论文链接:https://arxiv.org/abs/2406.04823


论文标题:3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination

论文链接:https://arxiv.org/abs/2406.05132


论文标题:Creativity Has Left the Chat: The Price of Debiasing Language Models

论文链接:https://arxiv.org/abs/2406.05587


论文标题:Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation

论文链接:https://arxiv.org/abs/2406.06525


论文标题:Margin-aware Preference Optimization for Aligning Diffusion Models Without Reference

论文链接:https://arxiv.org/abs/2406.06424


论文标题:Husky: A Unified, Open-Source Language Agent for Multi-Step Reasoning

论文链接:https://arxiv.org/abs/2406.06469


论文标题:Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters

论文链接:https://arxiv.org/abs/2406.05955


论文标题:Self-Tuning: Instructing LLMs to Effectively Acquire New Knowledge through Self-Teaching

论文链接:https://arxiv.org/abs/2406.06326


论文标题:An Image is Worth 32 Tokens for Reconstruction and Generation

论文链接:https://arxiv.org/abs/2406.07550


论文标题:TextGrad: Automatic “Differentiation” via Text

论文链接:https://arxiv.org/abs/2406.07496


论文标题:Simple and Effective Masked Diffusion Language Models

论文链接:https://arxiv.org/abs/2406.07524


论文标题:Never Miss A Beat: An Efficient Recipe for Context Window Extension of Large Language Models with Consistent “Middle” Enhancement

论文链接:https://arxiv.org/abs/2406.07138


论文标题:Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling

论文链接:https://arxiv.org/abs/2406.07522


论文标题:Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing

论文链接:https://arxiv.org/abs/2406.08464


论文标题:What If We Recaption Billions of Web Images with LLaMA-3?

论文链接:https://arxiv.org/abs/2406.08478


论文标题:Large Language Model Unlearning via Embedding-Corrupted Prompts

论文链接:https://arxiv.org/abs/2406.07933


论文标题:Large Language Models Must Be Taught to Know What They Don’t Know

论文链接:https://arxiv.org/abs/2406.08391


论文标题:An Empirical Study of Mamba-based Language Models

论文链接:https://arxiv.org/abs/2406.07887


论文标题:Discovering Preference Optimization Algorithms with and for Large Language Models

论文链接:https://arxiv.org/abs/2406.08414


论文标题:Transformers Meet Neural Algorithmic Reasoners

论文链接:https://arxiv.org/abs/2406.09308


论文标题:MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding

论文链接:https://arxiv.org/abs/2406.09297


论文标题:An Image is Worth More Than 16x16 Patches: Exploring Transformers on Individual Pixels

论文链接:https://arxiv.org/abs/2406.09415


论文标题:FouRA: Fourier Low Rank Adaptation

论文链接:https://arxiv.org/abs/2406.08798


论文标题:Bootstrapping Language Models with DPO Implicit Rewards

论文链接:https://arxiv.org/abs/2406.09760


论文标题:Be like a Goldfish, Don’t Memorize! Mitigating Memorization in Generative LLMs

论文链接:https://arxiv.org/abs/2406.10209


论文标题:Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs

论文链接:https://arxiv.org/abs/2406.10216


论文标题:THEANINE: Revisiting Memory Management in Long-term Conversations with Timeline-augmented Response Generation

论文链接:https://arxiv.org/abs/2406.10996


论文标题:Task Me Anything

论文链接:https://arxiv.org/abs/2406.11775


论文标题:How Do Large Language Models Acquire Factual Knowledge During Pretraining?

论文链接:https://arxiv.org/abs/2406.11813


论文标题:mDPO: Conditional Preference Optimization for Multimodal Large Language Models

论文链接:https://arxiv.org/abs/2406.11839


论文标题:Nemotron-4 340B Technical Report

论文链接:https://arxiv.org/abs/2406.11704


论文标题:DataComp-LM: In Search of the Next Generation of Training Sets for Language Models

论文链接:https://arxiv.org/abs/2406.11794


论文标题:Tokenization Falling Short: The Curse of Tokenization

论文链接:https://arxiv.org/abs/2406.11687


论文标题:DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence

论文链接:https://arxiv.org/abs/2406.11931


论文标题:Unveiling Encoder-Free Vision-Language Models

论文链接:https://arxiv.org/abs/2406.11832


论文标题:Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level

论文链接:https://arxiv.org/abs/2406.11817


论文标题:HARE: HumAn pRiors, a key to small language model Efficiency

论文链接:https://arxiv.org/abs/2406.11410


论文标题:Measuring memorization in RLHF for code completion

论文链接:https://arxiv.org/abs/2406.11715


论文标题:Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts

论文链接:https://arxiv.org/abs/2406.12034


论文标题:From RAGs to Rich Parameters: Probing How Language Models Utilize External Knowledge Over Parametric Information for Factual Queries

论文链接:https://arxiv.org/abs/2406.12824


论文标题:Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges

论文链接:https://arxiv.org/abs/2406.12624


论文标题:Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?

论文链接:https://arxiv.org/abs/2406.13121


论文标题:Instruction Pre-Training: Language Models are Supervised Multitask Learners

论文链接:https://arxiv.org/abs/2406.14491


论文标题:Can LLMs Learn by Teaching? A Preliminary Study

论文链接:https://arxiv.org/abs/2406.14629


论文标题:A Tale of Trust and Accuracy: Base vs. Instruct LLMs in RAG Systems

论文链接:https://arxiv.org/abs/2406.14972


论文标题:LongRAG: Enhancing Retrieval-Augmented Generation with Long-context LLMs

论文链接:https://arxiv.org/abs/2406.15319


论文标题:MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression

论文链接:https://arxiv.org/abs/2406.14909


论文标题:Efficient Continual Pre-training by Mitigating the Stability Gap

论文链接:https://arxiv.org/abs/2406.14833


论文标题:Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers

论文链接:https://arxiv.org/abs/2406.16747


论文标题:WARP: On the Benefits of Weight Averaged Rewarded Policies

论文链接:https://arxiv.org/abs/2406.16768


论文标题:Adam-mini: Use Fewer Learning Rates To Gain More

论文链接:https://arxiv.org/abs/2406.16793


论文标题:The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale

论文链接:https://arxiv.org/abs/2406.17557


论文标题:LongIns: A Challenging Long-context Instruction-based Exam for LLMs

论文链接:https://arxiv.org/abs/2406.17588


论文标题:Following Length Constraints in Instructions

论文链接:https://arxiv.org/abs/2406.17744


论文标题:A Closer Look into Mixture-of-Experts in Large Language Models

论文链接:https://arxiv.org/abs/2406.18219


论文标题:RouteLLM: Learning to Route LLMs with Preference Data

论文链接:https://arxiv.org/abs/2406.18665


论文标题:Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs

论文链接:https://arxiv.org/abs/2406.18629


论文标题:Dataset Size Recovery from LoRA Weights

论文链接:https://arxiv.org/abs/2406.19395


论文标题:From Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs by Finetuning on Synthetic Data

论文链接:https://arxiv.org/abs/2406.19292


论文标题:Changing Answer Order Can Decrease MMLU Accuracy

论文链接:https://arxiv.org/abs/2406.19470


论文标题:Direct Preference Knowledge Distillation for Large Language Models

论文链接:https://arxiv.org/abs/2406.19774


论文标题:LLM Critics Help Catch LLM Bugs

论文链接:https://arxiv.org/abs/2407.00215


论文标题:Scaling Synthetic Data Creation with 1,000,000,000 Personas

论文链接:https://arxiv.org/abs/2406.20094


七月论文


论文标题:LLM See, LLM Do: Guiding Data Generation to Target Non-Differentiable Objectives

论文链接:https://arxiv.org/abs/2407.01490


论文标题:Searching for Best Practices in Retrieval-Augmented Generation

论文链接:https://arxiv.org/abs/2407.01219


论文标题:Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models

论文链接:https://arxiv.org/abs/2407.01906


论文标题:Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion

论文链接:https://arxiv.org/abs/2407.01392


论文标题:Eliminating Position Bias of Language Models: A Mechanistic Approach

论文链接:https://arxiv.org/abs/2407.01100


论文标题:JMInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention

论文链接:https://arxiv.org/abs/2407.02490


论文标题:TokenPacker: Efficient Visual Projector for Multimodal LLM

论文链接:https://arxiv.org/abs/2407.02392


论文标题:Reasoning in Large Language Models: A Geometric Perspective

论文链接:https://arxiv.org/abs/2407.02678


论文标题:RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs

论文链接:https://arxiv.org/abs/2407.02485


论文标题:AgentInstruct: Toward Generative Teaching with Agentic Flows

论文链接:https://arxiv.org/abs/2407.03502


论文标题:HEMM: Holistic Evaluation of Multimodal Foundation Models

论文链接:https://arxiv.org/abs/2407.03418


论文标题:Mixture of A Million Experts

论文链接:https://arxiv.org/abs/2407.04153


论文标题:Learning to (Learn at Test Time): RNNs with Expressive Hidden States

论文链接:https://arxiv.org/abs/2407.04620


论文标题:Vision Language Models Are Blind

论文链接:https://arxiv.org/abs/2407.06581


论文标题:Self-Recognition in Language Models

论文链接:https://arxiv.org/abs/2407.06946


论文标题:Inference Performance Optimization for Large Language Models on CPUs

论文链接:https://arxiv.org/abs/2407.07304


论文标题:Gradient Boosting Reinforcement Learning

论文链接:https://arxiv.org/abs/2407.08250


论文标题:FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision

论文链接:https://arxiv.org/abs/2407.08608


论文标题:SpreadsheetLLM: Encoding Spreadsheets for Large Language Models

论文链接:https://arxiv.org/abs/2407.09025


论文标题:New Desiderata for Direct Preference Optimization

论文链接:https://arxiv.org/abs/2407.09072


论文标题:Context Embeddings for Efficient Answer Generation in RAG

论文链接:https://arxiv.org/abs/2407.09252


论文标题:Qwen2 Technical Report

论文链接:https://arxiv.org/abs/2407.10671


论文标题:The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism

论文链接:https://arxiv.org/abs/2407.10457


论文标题:From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients

论文链接:https://arxiv.org/abs/2407.11239


论文标题:GoldFinch: High Performance RWKV/Transformer Hybrid with Linear Pre-Fill and Extreme KV-Cache Compression

论文链接:https://arxiv.org/abs/2407.12077


论文标题:Scaling Diffusion Transformers to 16 Billion Parameters

论文链接:https://arxiv.org/abs/2407.11633


论文标题:NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window?

论文链接:https://arxiv.org/abs/2407.11963


论文标题:Patch-Level Training for Large Language Models

论文链接:https://arxiv.org/abs/2407.12665


论文标题:LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models

论文链接:https://arxiv.org/abs/2407.12772


论文标题:A Survey of Prompt Engineering Methods in Large Language Models for Different NLP Tasks

论文链接:https://arxiv.org/abs/2407.12994


论文标题:Spectra: A Comprehensive Study of Ternary, Quantized, and FP16 Language Models

论文链接:https://arxiv.org/abs/2407.12327


论文标题:Attention Overflow: Language Model Input Blur during Long-Context Missing Items Recommendation

论文链接:https://arxiv.org/abs/2407.13481


论文标题:Weak-to-Strong Reasoning

论文链接:https://arxiv.org/abs/2407.13647


论文标题:Understanding Reference Policies in Direct Preference Optimization

论文链接:https://arxiv.org/abs/2407.13709


论文标题:Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies

论文链接:https://arxiv.org/abs/2407.13623


论文标题:BOND: Aligning LLMs with Best-of-N Distillation

论文链接:https://arxiv.org/abs/2407.14622


论文标题:Compact Language Models via Pruning and Knowledge Distillation

论文链接:https://arxiv.org/abs/2407.14679


论文标题:LazyLLM: Dynamic Token Pruning for Efficient Long Context LLM Inference

论文链接:https://arxiv.org/abs/2407.14057


论文标题:Mini-Sequence Transformer: Optimizing Intermediate Memory for Long Sequences Training

论文链接:https://arxiv.org/abs/2407.15892


论文标题:DDK: Distilling Domain Knowledge for Efficient Large Language Models

论文链接:https://arxiv.org/abs/2407.16154


论文标题:Generation Constraint Scaling Can Mitigate Hallucination

论文链接:https://arxiv.org/abs/2407.16908


论文标题:Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach

论文链接:https://arxiv.org/abs/2407.16833


论文标题:Course-Correction: Safety Alignment Using Synthetic Preferences

论文链接:https://arxiv.org/abs/2407.16637


论文标题:Data Mixture Inference: What do BPE Tokenizers Reveal about their Training Data?

论文链接:https://arxiv.org/abs/2407.16607


论文标题:Meta-Rewarding Language Models: Self-Improving Alignment with LLM-as-a-Meta-Judge

论文链接:https://arxiv.org/abs/2407.19594


论文标题:Improving Retrieval Augmented Language Model with Self-Reasoning

论文链接:https://arxiv.org/abs/2407.19813


论文标题:Apple Intelligence Foundation Language Models

论文链接:https://arxiv.org/abs/2407.21075


论文标题:ThinK: Thinner Key Cache by Query-Driven Pruning

论文链接:https://arxiv.org/abs/2407.21018


论文标题:The Llama 3 Herd of Models

论文链接:https://arxiv.org/abs/2407.21783


论文标题:Gemma 2: Improving Open Language Models at a Practical Size

论文链接:https://arxiv.org/abs/2408.00118


八月论文


论文标题:SAM 2: Segment Anything in Images and Videos

论文链接:https://arxiv.org/abs/2408.00714


论文标题:POA: Pre-training Once for Models of All Sizes

论文链接:https://arxiv.org/abs/2408.01031


论文标题:RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework

论文链接:https://arxiv.org/abs/2408.01262


论文标题:A Survey of Mamba

论文链接:https://arxiv.org/abs/2408.01129


论文标题:MiniCPM-V: A GPT-4V Level MLLM on Your Phone

论文链接:https://arxiv.org/abs/2408.01800


论文标题:RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation

论文链接:https://arxiv.org/abs/2408.02545


论文标题:Self-Taught Evaluators

论文链接:https://arxiv.org/abs/2408.02666


论文标题:BioMamba: A Pre-trained Biomedical Language Representation Model Leveraging Mamba

论文链接:https://arxiv.org/abs/2408.02600


论文标题:EXAONE 3.0 7.8B Instruction Tuned Language Model

论文链接:https://arxiv.org/abs/2408.03541


论文标题:1.5-Pints Technical Report: Pretraining in Days, Not Months – Your Language Model Thrives on Quality Data

论文链接:https://arxiv.org/abs/2408.03506


论文标题:Conversational Prompt Engineering

论文链接:https://arxiv.org/abs/2408.04560


论文标题:Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP

论文链接:https://arxiv.org/abs/2408.04303


论文标题:The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery

论文链接:https://arxiv.org/abs/2408.06292


论文标题:Hermes 3 Technical Report

论文链接:https://arxiv.org/abs/2408.12570


论文标题:Customizing Language Models with Instance-wise LoRA for Sequential Recommendation

论文链接:https://arxiv.org/abs/2408.10159


论文标题:Enhancing Robustness in Large Language Models: Prompting for Mitigating the Impact of Irrelevant Information

论文链接:https://arxiv.org/abs/2408.10615


论文标题:To Code, or Not To Code? Exploring Impact of Code in Pre-training

论文链接:https://arxiv.org/abs/2408.10914


论文标题:LLM Pruning and Distillation in Practice: The Minitron Approach

论文链接:https://arxiv.org/abs/2408.11796


论文标题:Jamba-1.5: Hybrid Transformer-Mamba Models at Scale

论文链接:https://arxiv.org/abs/2408.12570


论文标题:Controllable Text Generation for Large Language Models: A Survey

论文链接:https://arxiv.org/abs/2408.12599


论文标题:Multi-Layer Transformers Gradient Can be Approximated in Almost Linear Time

论文链接:https://arxiv.org/abs/2408.13233


论文标题:A Practitioner's Guide to Continual Multimodal Pretraining

论文链接:https://arxiv.org/abs/2408.14471


论文标题:Building and better understanding vision-language models: insights and future directions

论文链接:https://arxiv.org/abs/2408.12637


论文标题:CURLoRA: Stable LLM Continual Fine-Tuning and Catastrophic Forgetting Mitigation

论文链接:https://arxiv.org/abs/2408.14572


论文标题:The Mamba in the Llama: Distilling and Accelerating Hybrid Models

论文链接:https://arxiv.org/abs/2408.15237


论文标题:ReMamba: Equip Mamba with Effective Long-Sequence Modeling

论文链接:https://arxiv.org/abs/2408.15496


论文标题:Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling

论文链接:https://arxiv.org/abs/2408.16737


论文标题:LongRecipe: Recipe for Efficient Long Context Generalization in Large Languge Models

论文链接:https://arxiv.org/abs/2409.00509


九月论文


论文标题:OLMoE: Open Mixture-of-Experts Language Models

论文链接:https://arxiv.org/abs/2409.02060


论文标题:In Defense of RAG in the Era of Long-Context Language Models

论文链接:https://arxiv.org/abs/2409.01666


论文标题:Attention Heads of Large Language Models: A Survey

论文链接:https://arxiv.org/abs/2409.03752


论文标题:LongCite: Enabling LLMs to Generate Fine-grained Citations in Long-context QA

论文链接:https://arxiv.org/abs/2409.02897


论文标题:How Do Your Code LLMs Perform? Empowering Code Instruction Tuning with High-Quality Data

论文链接:https://arxiv.org/abs/2409.03810


论文标题:Theory, Analysis, and Best Practices for Sigmoid Self-Attention

论文链接:https://arxiv.org/abs/2409.04431


论文标题:LLaMA-Omni: Seamless Speech Interaction with Large Language Models

论文链接:https://arxiv.org/abs/2409.06666


论文标题:What is the Role of Small Models in the LLM Era: A Survey

论文链接:https://arxiv.org/abs/2409.06857


论文标题:Policy Filtration in RLHF to Fine-Tune LLM for Code Generation

论文链接:https://arxiv.org/abs/2409.06957


论文标题:RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval

论文链接:https://arxiv.org/abs/2409.10516


论文标题:Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement

论文链接:https://arxiv.org/abs/2409.12122


论文标题:Qwen2.5-Coder Technical Report

论文链接:https://arxiv.org/abs/2409.12186


论文标题:Instruction Following without Instruction Tuning

论文链接:https://arxiv.org/abs/2409.14254


论文标题:Is Preference Alignment Always the Best Option to Enhance LLM-Based Translation? An Empirical Analysis

论文链接:https://arxiv.org/abs/2409.20059


论文标题:The Perfect Blend: Redefining RLHF with Mixture of Judges

论文链接:https://arxiv.org/abs/2409.20370


十月论文


论文标题:Addition is All You Need for Energy-efficient Language Models

论文链接:https://arxiv.org/abs/2410.00907


论文标题:Quantifying Generalization Complexity for Large Language Models

论文链接:https://arxiv.org/abs/2410.01769


论文标题:When a language model is optimized for reasoning, does it still show embers of autoregression? An analysis of OpenAI o1

论文链接:https://arxiv.org/abs/2410.01792


论文标题:Were RNNs All We Needed?

论文链接:https://arxiv.org/abs/2410.01201


论文标题:Selective Attention Improves Transformer

论文链接:https://arxiv.org/abs/2410.02703


论文标题:LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations

论文链接:https://arxiv.org/abs/2410.02707


论文标题:LLaVA-Critic: Learning to Evaluate Multimodal Models

论文链接:https://arxiv.org/abs/2410.02712


论文标题:Differential Transformer

论文链接:https://arxiv.org/abs/2410.05258


论文标题:GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models

论文链接:https://arxiv.org/abs/2410.05229


论文标题:ARIA: An Open Multimodal Native Mixture-of-Experts Model

论文链接:https://arxiv.org/abs/2410.05993


论文标题:O1 Replication Journey: A Strategic Progress Report – Part 1

论文链接:https://arxiv.org/abs/2410.18982


论文标题:Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG

论文链接:https://arxiv.org/abs/2410.05983


论文标题:From Generalist to Specialist: Adapting Vision Language Models via Task-Specific Visual Instruction Tuning

论文链接:https://arxiv.org/abs/2410.06456


论文标题:KV Prediction for Improved Time to First Token

论文链接:https://arxiv.org/abs/2410.08391


论文标题:Baichuan-Omni Technical Report

论文链接:https://arxiv.org/abs/2410.08565


论文标题:MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models

论文链接:https://arxiv.org/abs/2410.10139


论文标题:LOKI: A Comprehensive Synthetic Data Detection Benchmark using Large Multimodal Models

论文链接:https://arxiv.org/abs/2410.09732


论文标题:AFlow: Automating Agentic Workflow Generation

论文链接:https://arxiv.org/abs/2410.10762


论文标题:Toward General Instruction-Following Alignment for Retrieval-Augmented Generation

论文链接:https://arxiv.org/abs/2410.09584


论文标题:Pre-training Distillation for Large Language Models: A Design Space Exploration

论文链接:https://arxiv.org/abs/2410.16215


论文标题:MIA-DPO: Multi-Image Augmented Direct Preference Optimization For Large Vision-Language Models

论文链接:https://arxiv.org/abs/2410.17637


论文标题:Scalable Ranked Preference Optimization for Text-to-Image Generation

论文链接:https://arxiv.org/abs/2410.18013


论文标题:Scaling Diffusion Language Models via Adaptation from Autoregressive Models

论文链接:https://arxiv.org/abs/2410.17891


论文标题:Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback

论文链接:https://arxiv.org/abs/2410.19133


论文标题:Counting Ability of Large Language Models and Impact of Tokenization

论文链接:https://arxiv.org/abs/2410.19730


论文标题:A Survey of Small Language Models

论文链接:https://arxiv.org/abs/2410.20011


论文标题:Accelerating Direct Preference Optimization with Prefix Sharing

论文链接:https://arxiv.org/abs/2410.20305


论文标题:Mind Your Step (by Step): Chain-of-Thought can Reduce Performance on Tasks where Thinking Makes Humans Worse

论文链接:https://arxiv.org/abs/2410.21333


论文标题:LongReward: Improving Long-context Large Language Models with AI Feedback

论文链接:https://arxiv.org/abs/2410.21252


论文标题:ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference

论文链接:https://arxiv.org/abs/2410.21465


论文标题:Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications

论文链接:https://arxiv.org/abs/2410.21943


论文标题:CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation

论文链接:https://arxiv.org/abs/2410.23090


论文标题:What Happened in LLMs Layers when Trained for Fast vs. Slow Thinking: A Gradient Perspective

论文链接:https://arxiv.org/abs/2410.23743


论文标题:GPT or BERT: why not both?

论文链接:https://arxiv.org/abs/2410.24159


论文标题:Language Models can Self-Lengthen to Generate Long Texts

论文链接:https://arxiv.org/abs/2410.23933


十一月论文


论文标题:Adding Error Bars to Evals: A Statistical Approach to Language Model Evaluations

论文链接:https://arxiv.org/abs/2411.00640


论文标题:Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation

论文链接:https://arxiv.org/abs/2411.00412


论文标题:Multi-expert Prompting Improves Reliability, Safety, and Usefulness of Large Language Models

论文链接:https://arxiv.org/abs/2411.00492


论文标题:Sample-Efficient Alignment for LLMs

论文链接:https://arxiv.org/abs/2411.01493


论文标题:A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness

论文链接:https://arxiv.org/abs/2411.03350


论文标题:"Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization

论文链接:https://arxiv.org/abs/2411.02355


论文标题:Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study

论文链接:https://arxiv.org/abs/2411.02462


论文标题:HtmlRAG: HTML is Better Than Plain Text for Modeling Retrieved Knowledge in RAG Systems

论文链接:https://arxiv.org/abs/2411.02959


论文标题:Both Text and Images Leaked! A Systematic Analysis of Multimodal LLM Data Contamination

论文链接:https://arxiv.org/abs/2411.03823


论文标题:Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding

论文链接:https://arxiv.org/abs/2411.04282


论文标题:Number Cookbook: Number Understanding of Language Models and How to Improve It

论文链接:https://arxiv.org/abs/2411.03766


论文标题:Mixture-of-Transformers: A Sparse and Scalable Architecture for Multi-Modal Foundation Models

论文链接:https://arxiv.org/abs/2411.04996


论文标题:BitNet a4.8: 4-bit Activations for 1-bit LLMs

论文链接:https://arxiv.org/abs/2411.04965


论文标题:Scaling Laws for Precision

论文链接:https://arxiv.org/abs/2411.04330


论文标题:Energy Efficient Protein Language Models: Leveraging Small Language Models with LoRA for Controllable Protein Generation

论文链接:https://arxiv.org/abs/2411.05966


论文标题:Balancing Pipeline Parallelism with Vocabulary Parallelism

论文链接:https://arxiv.org/abs/2411.05288


论文标题:Toward Optimal Search and Retrieval for RAG

论文链接:https://arxiv.org/abs/2411.07396


论文标题:Large Language Models Can Self-Improve in Long-context Reasoning

论文链接:https://arxiv.org/abs/2411.08147


论文标题:Stronger Models are NOT Stronger Teachers for Instruction Tuning

论文链接:https://arxiv.org/abs/2411.07133


论文标题:Direct Preference Optimization Using Sparse Feature-Level Constraints

论文链接:https://arxiv.org/abs/2411.07618


论文标题:Cut Your Losses in Large-Vocabulary Language Models

论文链接:https://arxiv.org/abs/2411.09009


论文标题:Does Prompt Formatting Have Any Impact on LLM Performance?

论文链接:https://arxiv.org/abs/2411.10541


论文标题:SymDPO: Boosting In-Context Learning of Large Multimodal Models with Symbol Demonstration Direct Preference Optimization

论文链接:https://arxiv.org/abs/2411.11909


论文标题:SageAttention2 Technical Report: Accurate 4 Bit Attention for Plug-and-play Inference Acceleration

论文链接:https://arxiv.org/abs/2411.10958


论文标题:Bi-Mamba: Towards Accurate 1-Bit State Space Models

论文链接:https://arxiv.org/abs/2411.11843


论文标题:RedPajama: an Open Dataset for Training Large Language Models

论文链接:https://arxiv.org/abs/2411.12372


论文标题:Hymba: A Hybrid-head Architecture for Small Language Models

论文链接:https://arxiv.org/abs/2411.13676


论文标题:Loss-to-Loss Prediction: Scaling Laws for All Datasets

论文链接:https://arxiv.org/abs/2411.12925


论文标题:When Precision Meets Position: BFloat16 Breaks Down RoPE in Long-Context Training

论文链接:https://arxiv.org/abs/2411.13476


论文标题:Multimodal Autoregressive Pre-training of Large Vision Encoders

论文链接:https://arxiv.org/abs/2411.14402


论文标题:Natural Language Reinforcement Learning

论文链接:https://arxiv.org/abs/2411.14251


论文标题:Large Multi-modal Models Can Interpret Features in Large Multi-modal Models

论文链接:https://arxiv.org/abs/2411.14982


论文标题:TÜLU 3: Pushing Frontiers in Open Language Model Post-Training

论文链接:https://arxiv.org/abs/2411.15124


论文标题:MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs

论文链接:https://arxiv.org/abs/2411.15296


论文标题:LLMs Do Not Think Step-by-step In Implicit Reasoning

论文链接:https://arxiv.org/abs/2411.15862


论文标题:O1 Replication Journey – Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?

论文链接:https://arxiv.org/abs/2411.16489


论文标题:Star Attention: Efficient LLM Inference over Long Sequences

论文链接:https://arxiv.org/abs/2411.17116


论文标题:Low-Bit Quantization Favors Undertrained LLMs: Scaling Laws for Quantized LLMs with 100T Training Tokens

论文链接:https://arxiv.org/abs/2411.17691


论文标题:Rethinking Token Reduction in MLLMs: Towards a Unified Paradigm for Training-Free Acceleration

论文链接:https://arxiv.org/abs/2411.17686


论文标题:Reverse Thinking Makes LLMs Stronger Reasoners

论文链接:https://arxiv.org/abs/2411.19865


论文标题:Critical Tokens Matter: Token-Level Contrastive Estimation Enhances LLM's Reasoning Capability

论文链接:https://arxiv.org/abs/2411.19943


十二月论文


论文标题:Designing Scale-Wise Transformers for Text-to-Image Synthesis

论文链接:https://arxiv.org/abs/2412.01819


论文标题:X-Prompt: Towards Universal In-Context Image Generation in Auto-Regressive Vision Language Foundation Models

论文链接:https://arxiv.org/abs/2412.01824


论文标题:Free Process Rewards without Process Labels

论文链接:https://arxiv.org/abs/2412.01981


论文标题:Scaling Image Tokenizers with Grouped Spherical Quantization

论文链接:https://arxiv.org/abs/2412.02632


论文标题:RARE: Retrieval-Augmented Reasoning Enhancement for Large Language Models

论文链接:https://arxiv.org/abs/2412.02830


论文标题:Perception Tokens Enhance Visual Reasoning in Multimodal Language Models

论文链接:https://arxiv.org/abs/2412.03548


论文标题:Evaluating Language Models as Synthetic Data Generators

论文链接:https://arxiv.org/abs/2412.03679


论文标题:Best-of-N Jailbreaking

论文链接:https://arxiv.org/abs/2412.03556


论文标题:PaliGemma 2: A Family of Versatile VLMs for Transfer

论文链接:https://arxiv.org/abs/2412.03555


论文标题:VisionZip: Longer is Better but Not Necessary in Vision Language Models

论文链接:https://arxiv.org/abs/2412.04467


论文标题:Evaluating and Aligning CodeLLMs on Human Preference

论文链接:https://arxiv.org/abs/2412.05210


论文标题:MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale

论文链接:https://arxiv.org/abs/2412.05237


论文标题:Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling

论文链接:https://arxiv.org/abs/2412.05271


论文标题:LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods

论文链接:https://arxiv.org/abs/2412.05579


论文标题:Does RLHF Scale? Exploring the Impacts From Data, Model, and Method

论文链接:https://arxiv.org/abs/2412.06000


论文标题:Unraveling the Complexity of Memory in RL Agents: An Approach for Classification and Evaluation

论文链接:https://arxiv.org/abs/2412.06531


论文标题:Training Large Language Models to Reason in a Continuous Latent Space

论文链接:https://arxiv.org/abs/2412.06769


论文标题:AutoReason: Automatic Few-Shot Reasoning Decomposition

论文链接:https://arxiv.org/abs/2412.06975


论文标题:Large Concept Models: Language Modeling in a Sentence Representation Space

论文链接:https://arxiv.org/abs/2412.08821


论文标题:Phi-4 Technical Report

论文链接:https://arxiv.org/abs/2412.08905


论文标题:Byte Latent Transformer: Patches Scale Better Than Tokens

论文链接:https://arxiv.org/abs/2412.09871


论文标题:SCBench: A KV Cache-Centric Analysis of Long-Context Methods

论文链接:https://arxiv.org/abs/2412.10319


论文标题:Cultural Evolution of Cooperation among LLM Agents

论文链接:https://arxiv.org/abs/2412.10270


论文标题:DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding

论文链接:https://arxiv.org/abs/2412.10302


论文标题:No More Adam: Learning Rate Scaling at Initialization is All You Need

论文链接:https://arxiv.org/abs/2412.11768


论文标题:Precise Length Control in Large Language Models

论文链接:https://arxiv.org/abs/2412.11937


论文标题:The Open Source Advantage in Large Language Models (LLMs)

论文链接:https://arxiv.org/abs/2412.12004


论文标题:A Survey of Mathematical Reasoning in the Era of Multimodal Large Language Model: Benchmark, Method & Challenges

论文链接:https://arxiv.org/abs/2412.11936


论文标题:Are Your LLMs Capable of Stable Reasoning?

论文链接:https://arxiv.org/abs/2412.13147


论文标题:LLM Post-Training Recipes, Improving Reasoning in LLMs

论文链接:https://arxiv.org/abs/2412.14135


论文标题:Hansel: Output Length Controlling Framework for Large Language Models

论文链接:https://arxiv.org/abs/2412.14033


论文标题:Mind Your Theory: Theory of Mind Goes Deeper Than Reasoning

论文链接:https://arxiv.org/abs/2412.1363


论文标题:Alignment Faking in Large Language Models

论文链接:https://arxiv.org/abs/2412.14093


论文标题:SCOPE: Optimizing Key-Value Cache Compression in Long-Context Generation

论文链接:https://arxiv.org/abs/2412.13649


论文标题:LongBench v2: Towards Deeper Understanding and Reasoning on Realistic Long-Context Multitasks

论文链接:https://arxiv.org/abs/2412.15204


论文标题:Offline Reinforcement Learning for LLM Multi-Step Reasoning

论文链接:https://arxiv.org/abs/2412.16145


论文标题:Mulberry: Empowering MLLM with O1-like Reasoning and Reflection via Collective Monte Carlo Tree Search

论文链接:https://arxiv.org/abs/2412.18319


公众号后台回复“数据集”获取100+深度学习各方向资源整理

极市干货

技术专栏:多模态大模型超详细解读专栏搞懂Tranformer系列大视觉模型 (LVM) 解读扩散模型系列极市直播
技术综述:小目标检测那点事大模型面试八股含答案万字长文!人体姿态估计(HPE)入门教程

点击阅读原文进入CV社区

收获更多技术干货


极市平台
为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
 最新文章