极市导读
知名机器学习与 AI 研究者 Sebastian Raschka 整理了一份关于LLM 的阅读清单,清单详细介绍了每个月都有哪些重要论文产出。 >>加入极市CV技术交流群,走在计算机视觉的最前沿
2024 年,是 AI 领域让人兴奋的一年。在这一年中,各大科技公司、机构发布了数不胜数的研究。
从年初的 Sora,到年尾 DeepSeek-V3,我们见证了 AI 一轮又一轮的轰炸,AI给我们带来了意想不到的惊喜。
在这一年中,AI 论文被源源不断的产出。对于刚刚过去的 2024 年,有哪些论文值得反复阅读?知名机器学习与 AI 研究者 Sebastian Raschka 整理了一份关于LLM 的阅读清单,清单详细介绍了每个月都有哪些重要论文产出。
原文链接:https://sebastianraschka.com/blog/2024/llm-research-papers-the-2024-list.html
一月论文
论文标题:Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models
论文链接:https://arxiv.org/abs/2401.00788
论文标题:A Comprehensive Study of Knowledge Editing for Large Language Models
论文链接:https://arxiv.org/abs/2401.01286
论文标题:LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning
论文链接:https://arxiv.org/abs/2401.01325
论文标题:Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models
论文链接:https://arxiv.org/abs/2401.01335
论文标题:LLaMA Beyond English: An Empirical Study on Language Capability Transfer
论文链接 https://arxiv.org/abs/2401.01055
论文标题:A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and Toxicity
论文链接:https://arxiv.org/abs/2401.01967
论文标题:LLaMA Pro: Progressive LLaMA with Block Expansion
论文链接:https://arxiv.org/abs/2401.02415
论文标题:LLM Augmented LLMs: Expanding Capabilities through Composition
论文链接:https://arxiv.org/abs/2401.02412
论文标题: Blending Is All You Need: Cheaper, Better Alternative to Trillion-Parameters LLM
论文链接:https://arxiv.org/abs/2401.02994
论文标题:DeepSeek LLM: Scaling Open-Source Language Models with Longtermism
论文链接:https://arxiv.org/abs/2401.02954
论文标题:Denoising Vision Transformers
论文链接:https://arxiv.org/abs/2401.02957
论文标题:Long Context Compression with Activation Beacon
论文链接:https://arxiv.org/abs/2401.03462
论文标题:Mixtral of Experts
论文链接:https://arxiv.org/abs/2401.04088
论文标题:MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts
论文链接:https://arxiv.org/abs/2401.04081
论文标题:A Minimaximalist Approach to Reinforcement Learning from Human Feedback
论文链接:https://arxiv.org/abs/2401.04056
论文标题:RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation
论文链接:https://arxiv.org/abs/2401.04679
论文标题:Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training
论文链接:https://arxiv.org/abs/2401.05566
论文标题:Transformers are Multi-State RNNs
论文链接:https://arxiv.org/abs/2401.06104
论文标题:A Closer Look at AUROC and AUPRC under Class Imbalance
论文链接:https://arxiv.org/abs/2401.06091
论文标题:An Experimental Design Framework for Label-Efficient Supervised Finetuning of Large Language Models
论文链接:https://arxiv.org/abs/2401.06692
论文标题:Tuning Language Models by Proxy
论文链接:https://arxiv.org/abs/2401.08565
论文标题:Scalable Pre-training of Large Autoregressive Image Models
论文链接 https://arxiv.org/abs/2401.08541
论文标题:Code Generation with AlphaCodium: From Prompt Engineering to Flow Engineering
论文链接https://arxiv.org/abs/2401.08500
论文标题:RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture
论文链接:https://arxiv.org/abs/2401.08406
论文标题:ReFT: Reasoning with Reinforced Fine-Tuning
论文链接:https://arxiv.org/abs/2401.08967
论文标题:DiffusionGPT: LLM-Driven Text-to-Image Generation System
论文链接:https://arxiv.org/abs/2401.10061
论文标题:Self-Rewarding Language Models
论文链接:https://arxiv.org/abs/2401.10020
论文标题:VMamba: Visual State Space Model
论文链接:https://arxiv.org/abs/2401.10166
论文标题:Knowledge Fusion of Large Language Models
论文链接:https://arxiv.org/abs/2401.10491
论文标题:SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities
论文链接:https://arxiv.org/abs/2401.12168
论文标题:WARM: On the Benefits of Weight Averaged Reward Models
论文链接:https://arxiv.org/abs/2401.12187
论文标题:Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
论文链接:https://arxiv.org/abs/2401.12070
论文标题:MambaByte: Token-free Selective State Space Model
论文链接:https://arxiv.org/abs/2401.13660
论文标题:SpacTor-T5: Pre-training T5 Models with Span Corruption and Replaced Token Detection
论文链接:https://arxiv.org/abs/2401.13160
论文标题:Rethinking Patch Dependence for Masked Autoencoders
论文链接:https://arxiv.org/abs/2401.14391
论文标题:Pix2gestalt: Amodal Segmentation by Synthesizing Wholes
论文链接:https://arxiv.org/abs/2401.14398
论文标题:Multimodal Pathway: Improve Transformers with Irrelevant Data from Other Modalities
论文链接:https://arxiv.org/abs/2401.14405
论文标题:EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty
论文链接:https://arxiv.org/abs/2401.15077
论文标题:MoE-LLaVA: Mixture of Experts for Large Vision-Language Models
论文链接:https://arxiv.org/abs/2401.15947
论文标题:Rephrasing the Web: A Recipe for Compute and Data-Efficient Language Modeling
论文链接:https://arxiv.org/abs/2401.16380
论文标题:KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization
论文链接:https://arxiv.org/abs/2401.18079
二月论文
论文标题:Efficient Exploration for LLMs
论文链接:https://arxiv.org/abs/2402.00396
论文标题:OLMo: Accelerating the Science of Language Models
论文链接:https://arxiv.org/abs/2402.00838
论文标题:Tiny Titans: Can Smaller Large Language Models Punch Above Their Weight in the Real World for Meeting Summarization?
论文链接:https://arxiv.org/abs/2402.00841
论文标题:Repeat After Me: Transformers are Better than State Space Models at Copying
论文链接:https://arxiv.org/abs/2402.01032
论文标题:LiPO: Listwise Preference Optimization through Learning-to-Rank
论文链接:https://arxiv.org/abs/2402.01878
论文标题:FindingEmo: An Image Dataset for Emotion Recognition in the Wild
论文链接:https://arxiv.org/abs/2402.01355
论文标题:More Agents Is All You Need
论文链接:https://arxiv.org/abs/2402.05120
论文标题:DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models
论文链接:https://arxiv.org/abs/2402.03300
论文标题:MobileVLM V2: Faster and Stronger Baseline for Vision Language Model
论文链接:https://arxiv.org/abs/2402.03766
论文标题:A Phase Transition Between Positional and Semantic Learning in a Solvable Model of Dot-Product Attention
论文链接:https://arxiv.org/abs/2402.03902
论文标题:Scaling Laws for Downstream Task Performance of Large Language Models
论文链接:https://arxiv.org/abs/2402.04177
论文标题:MOMENT: A Family of Open Time-series Foundation Models
论文链接:https://arxiv.org/abs/2402.03885
论文标题:Vision Superalignment: Weak-to-Strong Generalization for Vision Foundation Models
论文链接:https://arxiv.org/abs/2402.03749
论文标题:Self-Discover: Large Language Models Self-Compose Reasoning Structures
论文链接:https://arxiv.org/abs/2402.03620
论文标题:Grandmaster-Level Chess Without Search
论文链接:https://arxiv.org/abs/2402.04494
论文标题:Direct Language Model Alignment from Online AI Feedback
论文链接:https://arxiv.org/abs/2402.04792
论文标题:Buffer Overflow in Mixture of Experts
论文链接:https://arxiv.org/abs/2402.05526
论文标题:The Boundary of Neural Network Trainability is Fractal
论文链接:https://arxiv.org/abs/2402.06184
论文标题:ODIN: Disentangled Reward Mitigates Hacking in RLHF
论文链接:https://arxiv.org/abs/2402.07319
论文标题:Policy Improvement using Language Feedback Models
论文链接:https://arxiv.org/abs/2402.07876
论文标题:Scaling Laws for Fine-Grained Mixture of Experts
论文链接:https://arxiv.org/abs/2402.07871
论文标题:Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model
论文链接:https://arxiv.org/abs/2402.07610
论文标题:Step-On-Feet Tuning: Scaling Self-Alignment of LLMs via Bootstrapping
论文链接:https://arxiv.org/abs/2402.07610
论文标题:Suppressing Pink Elephants with Direct Principle Feedback
论文链接:https://arxiv.org/abs/2402.07896
论文标题:World Model on Million-Length Video And Language With RingAttention
论文链接:https://arxiv.org/abs/2402.08268
论文标题:Mixtures of Experts Unlock Parameter Scaling for Deep RL
论文链接:https://arxiv.org/abs/2402.08609
论文标题:DoRA: Weight-Decomposed Low-Rank Adaptation
论文链接:https://arxiv.org/abs/2402.09353
论文标题:Transformers Can Achieve Length Generalization But Not Robustly
论文链接:https://arxiv.org/abs/2402.09371
论文标题:BASE TTS: Lessons From Building a Billion-Parameter Text-to-Speech Model on 100K Hours of Data
论文链接:https://arxiv.org/abs/2402.08093
论文标题:Recovering the Pre-Fine-Tuning Weights of Generative Models
论文链接:https://arxiv.org/abs/2402.10208
论文标题:Generative Representational Instruction Tuning
论文链接:https://arxiv.org/abs/2402.09906
论文标题:FinTral: A Family of GPT-4 Level Multimodal Financial Large Language Models
论文链接:https://arxiv.org/abs/2402.10986
论文标题:OneBit: Towards Extremely Low-bit Large Language Models
论文链接:https://arxiv.org/abs/2402.11295
论文标题:LongAgent: Scaling Language Models to 128k Context through Multi-Agent Collaboration
论文链接:https://arxiv.org/abs/2402.11550
论文标题:Reformatted Alignment
论文链接:https://arxiv.org/abs/2402.12219
论文标题:AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling
论文链接:https://arxiv.org/abs/2402.12226
论文标题:Towards Cross-Tokenizer Distillation: the Universal Logit Distillation Loss for LLMs
论文链接:https://arxiv.org/abs/2402.12030
论文标题:LoRA+: Efficient Low Rank Adaptation of Large Models
论文链接:https://arxiv.org/abs/2402.12354
论文链接:https://arxiv.org/abs/2402.13144
论文标题:YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
论文链接:https://arxiv.org/abs/2402.13616
论文标题:LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens
论文标题:https://arxiv.org/abs/2402.13753
论文标题:Large Language Models for Data Annotation: A Survey
论文链接:https://arxiv.org/abs/2402.13446
论文标题:TinyLLaVA: A Framework of Small-scale Large Multimodal Models
论文链接:https://arxiv.org/abs/2402.14289
论文标题:Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs
论文链接:https://arxiv.org/abs/2402.14740
论文标题: Genie: Generative Interactive Environments
论文链接:https://arxiv.org/abs/2402.15391
论文标题:CARTE: Pretraining and Transfer for Tabular Learning
论文链接:https://arxiv.org/abs/2402.16785
论文标题:The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
论文链接:https://arxiv.org/abs/2402.17764
论文标题:Sora Generates Videos with Stunning Geometrical Consistency
论文链接:https://arxiv.org/abs/2402.17403
论文标题:When Scaling Meets LLM Finetuning: The Effect of Data, Model and Finetuning Method
论文链接:https://arxiv.org/abs/2402.17193
论文标题:Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models
论文链接:https://arxiv.org/abs/2402.19427
三月论文
论文标题:Learning and Leveraging World Models in Visual Representation Learning
论文链接:https://arxiv.org/abs/2403.00504
论文标题:Improving LLM Code Generation with Grammar Augmentation
论文链接:https://arxiv.org/abs/2403.01632
论文标题:The Hidden Attention of Mamba Models
论文链接:https://arxiv.org/abs/2403.01590
论文标题:Training-Free Pretrained Model Merging
论文链接:https://arxiv.org/abs/2403.01753
论文标题:Vision-RWKV: Efficient and Scalable Visual Perception with RWKV-Like Architectures
论文链接:https://arxiv.org/abs/2403.02308
论文标题:The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning
论文链接:https://arxiv.org/abs/2403.03218
论文标题:Evolution Transformer: In-Context Evolutionary Optimization
论文链接:https://arxiv.org/abs/2403.02985
论文标题:Enhancing Vision-Language Pre-training with Rich Supervisions
论文链接:https://arxiv.org/abs/2403.03346
论文标题:Scaling Rectified Flow Transformers for High-Resolution Image Synthesis
论文链接:https://arxiv.org/abs/2403.03206
论文标题:Design2Code: How Far Are We From Automating Front-End Engineering?
论文链接:https://arxiv.org/abs/2403.03163
论文标题:ShortGPT: Layers in Large Language Models are More Redundant Than You Expect
论文链接:https://arxiv.org/abs/2403.03853
论文标题:Backtracing: Retrieving the Cause of the Query
论文链接:https://arxiv.org/abs/2403.03956
论文标题:Learning to Decode Collaboratively with Multiple Language Models
论文链接:https://arxiv.org/abs/2403.03870
论文标题:SaulLM-7B: A pioneering Large Language Model for Law
论文链接:https://arxiv.org/abs/2403.03883
论文标题:Are Language Models Puzzle Prodigies? Algorithmic Puzzles Unveil Serious Challenges in Multimodal Reasoning
论文链接:https://arxiv.org/abs/2403.03864
论文标题:3D Diffusion Policy
论文链接:https://arxiv.org/abs/2403.03954
论文标题:MedMamba: Vision Mamba for Medical Image Classification
论文链接:https://arxiv.org/abs/2403.03849
论文标题:GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection
论文链接:https://arxiv.org/abs/2403.03507
论文标题:Stop Regressing: Training Value Functions via Classification for Scalable Deep RL
论文链接:https://arxiv.org/abs/2403.03950
论文标题:How Far Are We from Intelligent Visual Deductive Reasoning?
论文链接:https://arxiv.org/abs/2403.04732
论文标题:Common 7B Language Models Already Possess Strong Math Capabilities
论文链接:https://arxiv.org/abs/2403.04706
论文标题:Gemini 1.5: Unlocking Multimodal Understanding Across Millions of Tokens of Context
论文链接:https://arxiv.org/abs/2403.05530
论文标题:Is Cosine-Similarity of Embeddings Really About Similarity?
论文链接:https://arxiv.org/abs/2403.05440
论文标题:LLM4Decompile: Decompiling Binary Code with Large Language Models
论文链接:https://arxiv.org/abs/2403.05286
论文标题:Algorithmic Progress in Language Models
论文链接:https://arxiv.org/abs/2403.05812
论文标题:Stealing Part of a Production Language Model
论文链接:https://arxiv.org/abs/2403.06634
论文标题:Chronos: Learning the Language of Time Series
论文链接:https://arxiv.org/abs/2403.07815
论文标题:Simple and Scalable Strategies to Continually Pre-train Large Language Models
论文链接:https://arxiv.org/abs/2403.08763
论文标题:Language Models Scale Reliably With Over-Training and on Downstream Tasks
论文链接:https://arxiv.org/abs/2403.08540
论文标题:BurstAttention: An Efficient Distributed Attention Framework for Extremely Long Sequences
论文链接:https://arxiv.org/abs/2403.09347
论文标题:LocalMamba: Visual State Space Model with Windowed Selective Scan
论文链接:https://arxiv.org/abs/2403.09338
论文标题:GiT: Towards Generalist Vision Transformer through Universal Language Interface
论文链接:https://arxiv.org/abs/2403.09394
论文标题:MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training
论文链接:https://arxiv.org/abs/2403.09611
论文标题:RAFT: Adapting Language Model to Domain Specific RAG
论文链接:https://arxiv.org/abs/2403.10131
论文标题:TnT-LLM: Text Mining at Scale with Large Language Models
论文链接:https://arxiv.org/abs/2403.12173
论文标题:Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression
论文链接:https://arxiv.org/abs/2403.15447
论文标题:PERL: Parameter Efficient Reinforcement Learning from Human Feedback
论文链接:https://arxiv.org/abs/2403.10704
论文标题:RewardBench: Evaluating Reward Models for Language Modeling
论文链接:https://arxiv.org/abs/2403.13787
论文标题:LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models
论文链接:https://arxiv.org/abs/2403.13372
论文标题:RakutenAI-7B: Extending Large Language Models for Japanese
论文链接:https://arxiv.org/abs/2403.15484
论文标题:SiMBA: Simplified Mamba-Based Architecture for Vision and Multivariate Time Series
论文链接:https://arxiv.org/abs/2403.15360
论文标题:Can Large Language Models Explore In-Context?
论文链接:https://arxiv.org/abs/2403.15371
论文标题:LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement
论文链接:https://arxiv.org/abs/2403.15042
论文标题:LLM Agent Operating System
论文链接:https://arxiv.org/abs/2403.16971
论文标题:The Unreasonable Ineffectiveness of the Deeper Layers
论文链接:https://arxiv.org/abs/2403.17887
论文标题:BioMedLM: A 2.7B Parameter Language Model Trained On Biomedical Text
论文链接:https://arxiv.org/abs/2403.18421
论文标题:ViTAR: Vision Transformer with Any Resolution
论文链接:https://arxiv.org/abs/2403.18361
论文标题:Long-form Factuality in Large Language Models
论文链接:https://arxiv.org/abs/2403.18802
论文标题:Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models
论文链接:https://arxiv.org/abs/2403.18814
论文标题:LISA: Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning
论文链接:https://arxiv.org/abs/2403.17919
论文标题:Mechanistic Design and Scaling of Hybrid Architectures
论文链接:https://arxiv.org/abs/2403.17844
论文标题:MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions
论文链接:https://arxiv.org/abs/2403.19651
论文标题:Model Stock: All We Need Is Just a Few Fine-Tuned Models
论文链接:https://arxiv.org/abs/2403.19522
四月论文
论文标题:Do Language Models Plan Ahead for Future Tokens?
论文链接:https://arxiv.org/abs/2404.00859
论文标题:Bigger is not Always Better: Scaling Properties of Latent Diffusion Models
论文链接:https://arxiv.org/abs/2404.01367
论文标题:The Fine Line: Navigating Large Language Model Pretraining with Down-streaming Capability Analysis
论文链接:https://arxiv.org/abs/2404.01204
论文标题:Diffusion-RWKV: Scaling RWKV-Like Architectures for Diffusion Models
论文链接:https://arxiv.org/abs/2404.04478
论文标题:Mixture-of-Depths: Dynamically Allocating Compute in Transformer-Based Language Models
论文链接:https://arxiv.org/abs/2404.02258
论文标题:Long-context LLMs Struggle with Long In-context Learning
论文链接:https://arxiv.org/abs/2404.02060
论文标题:Emergent Abilities in Reduced-Scale Generative Language Models
论文链接:https://arxiv.org/abs/2404.02204
论文标题:Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks
论文链接:https://arxiv.org/abs/2404.02151
论文标题:On the Scalability of Diffusion-based Text-to-Image Generation
论文链接:https://arxiv.org/abs/2404.02883
论文标题:BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models
论文链接:https://arxiv.org/abs/2404.02827
论文标题:Cross-Attention Makes Inference Cumbersome in Text-to-Image Diffusion Models
论文链接:https://arxiv.org/abs/2404.02747
论文标题:Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences
论文链接:https://arxiv.org/abs/2404.02151
论文标题:Training LLMs over Neurally Compressed Text
论文链接:https://arxiv.org/abs/2404.03626
论文标题:CantTalkAboutThis: Aligning Language Models to Stay on Topic in Dialogues
论文链接:https://arxiv.org/abs/2404.03820
论文标题:ReFT: Representation Finetuning for Language Models
论文链接:https://arxiv.org/abs/2404.03592
论文标题:Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data
论文链接:https://arxiv.org/abs/2404.03862
论文标题:Sigma: Siamese Mamba Network for Multi-Modal Semantic Segmentation
论文链接:https://arxiv.org/abs/2404.04256
论文标题:AutoCodeRover: Autonomous Program Improvement
论文链接:https://arxiv.org/abs/2404.05427
论文标题:Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence
论文链接:https://arxiv.org/abs/2404.05892
论文标题:CodecLM: Aligning Language Models with Tailored Synthetic Data
论文链接:https://arxiv.org/abs/2404.05875
论文标题:MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies
论文链接:https://arxiv.org/abs/2404.06395
论文标题:Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models
论文链接:https://arxiv.org/abs/2404.06209
论文标题:LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
论文链接:https://arxiv.org/abs/2404.05961
论文标题:Adapting LLaMA Decoder to Vision Transformer
论文链接:https://arxiv.org/abs/2404.06773
论文标题:Leave No Context Behind: Efficient Infinite Context Transformers with Infini-attention
论文链接:https://arxiv.org/abs/2404.07143
论文标题:LLoCO: Learning Long Contexts Offline
论文链接:https://arxiv.org/abs/2404.07979
论文标题:JetMoE: Reaching Llama2 Performance with 0.1M Dollars
论文链接:https://arxiv.org/abs/2404.07413
论文标题:Best Practices and Lessons Learned on Synthetic Data for Language Models
论文链接:https://arxiv.org/abs/2404.07503
论文标题:Rho-1: Not All Tokens Are What You Need
论文链接:https://arxiv.org/abs/2404.07965
论文标题:Pre-training Small Base LMs with Fewer Tokens
论文链接:https://arxiv.org/abs/2404.08634
论文标题:Dataset Reset Policy Optimization for RLHF
论文链接:https://arxiv.org/abs/2404.08495
论文标题:LLM In-Context Recall is Prompt Dependent
论文链接:https://arxiv.org/abs/2404.08865
论文标题:State Space Model for New-Generation Network Alternative to Transformers: A Survey
论文链接:https://arxiv.org/abs/2404.09516
论文标题:Chinchilla Scaling: A Replication Attempt
论文链接:https://arxiv.org/abs/2404.10102
论文标题:Learn Your Reference Model for Real Good Alignment
论文链接:https://arxiv.org/abs/2404.09656
论文标题:Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study
论文链接:https://arxiv.org/abs/2404.10719
论文标题:Scaling (Down) CLIP: A Comprehensive Analysis of Data, Architecture, and Training Strategies
论文链接:https://arxiv.org/abs/2404.08197
论文标题:How Faithful Are RAG Models? Quantifying the Tug-of-War Between RAG and LLMs’ Internal Prior
论文链接:https://arxiv.org/abs/2404.10198
论文标题:A Survey on Retrieval-Augmented Text Generation for Large Language Models
论文链接:https://arxiv.org/abs/2404.10981
论文标题:When LLMs are Unfit Use FastFit: Fast and Effective Text Classification with Many Classes
论文链接:https://arxiv.org/abs/2404.12365
论文标题:Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing
论文链接:https://arxiv.org/abs/2404.12253
论文标题:OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data
论文链接:https://arxiv.org/abs/2404.12195
论文标题:The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions
论文链接:https://arxiv.org/abs/2404.13208
论文标题:An Empirical Study of LLaMA3 Quantization: From LLMs to MLLMs
论文链接:https://arxiv.org/abs/2404.14047
论文标题:Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone
论文链接:https://arxiv.org/abs/2404.14219
论文标题: OpenELM: An Efficient Language Model Family with Open-source Training and Inference Framework
论文链接:https://arxiv.org/abs/2404.14619
论文标题:A Survey on Self-Evolution of Large Language Models
论文链接:https://arxiv.org/abs/2404.14662
论文标题:Multi-Head Mixture-of-Experts
论文链接:https://arxiv.org/abs/2404.15045
论文标题:NExT: Teaching Large Language Models to Reason about Code Execution
论文链接:https://arxiv.org/abs/2404.14662
论文标题:Graph Machine Learning in the Era of Large Language Models (LLMs)
论文链接:https://arxiv.org/abs/2404.14928
论文标题:Retrieval Head Mechanistically Explains Long-Context Factuality
论文链接:https://arxiv.org/abs/2404.15574
论文标题:Layer Skip: Enabling Early Exit Inference and Self-Speculative Decoding
论文链接:https://arxiv.org/abs/2404.16710
论文标题:Make Your LLM Fully Utilize the Context
论文链接:https://arxiv.org/abs/2404.16811
论文标题:LoRA Land: 310 Fine-tuned LLMs that Rival GPT-4, A Technical Report
论文链接:https://arxiv.org/abs/2405.00732
论文标题:Better & Faster Large Language Models via Multi-token Prediction
论文链接:https://arxiv.org/abs/2404.19737
论文标题:RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing
论文链接:https://arxiv.org/abs/2404.19543
论文标题:A Primer on the Inner Workings of Transformer-based Language Models
论文链接:https://arxiv.org/abs/2405.00208
论文标题:When to Retrieve: Teaching LLMs to Utilize Information Retrieval Effectively
论文链接:https://arxiv.org/abs/2404.19705
论文标题:KAN: Kolmogorov–Arnold Networks
论文链接:https://arxiv.org/abs/2404.19756
五月论文
论文标题:Is Bigger Edit Batch Size Always Better? An Empirical Study on Model Editing with Llama-3
论文链接:https://arxiv.org/abs/2405.00664
论文标题:Self-Play Preference Optimization for Language Model Alignment
论文链接:https://arxiv.org/abs/2405.00675
论文标题:A Careful Examination of Large Language Model Performance on Grade School Arithmetic
论文链接:https://arxiv.org/abs/2405.00332
论文标题:Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models
论文链接:https://arxiv.org/abs/2405.01535
论文标题:What Matters When Building Vision-Language Models?
论文链接:https://arxiv.org/abs/2405.02246
论文标题:Is Flash Attention Stable?
论文链接:https://arxiv.org/abs/2405.02803
论文标题:vAttention: Dynamic Memory Management for Serving LLMs without PagedAttention
论文链接:https://arxiv.org/abs/2405.04437
论文标题:xLSTM: Extended Long Short-Term Memory
论文链接:https://arxiv.org/abs/2405.04517
论文标题:You Only Cache Once: Decoder-Decoder Architectures for Language Models
论文链接:https://arxiv.org/abs/2405.05254
论文标题:DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
论文链接:https://arxiv.org/abs/2405.04434
论文标题:Fishing for Magikarp: Automatically Detecting Under-trained Tokens in Large Language Models
论文标题:https://arxiv.org/abs/2405.05417
论文标题:Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?
论文链接:https://arxiv.org/abs/2405.05904
论文标题:Value Augmented Sampling for Language Model Alignment and Personalization
论文标题:https://arxiv.org/abs/2405.06639
论文标题:PHUDGE: Phi-3 as Scalable Judge
论文链接:https://arxiv.org/abs/2405.08029
论文标题:RLHF Workflow: From Reward Modeling to Online RLHF
论文链接:https://arxiv.org/abs/2405.07863
论文标题:LoRA Learns Less and Forgets Less
论文链接:https://arxiv.org/abs/2405.09673
论文标题:Xmodel-VLM: A Simple Baseline for Multimodal Vision Language Model
论文链接:https://arxiv.org/abs/2405.09215
论文标题:Chameleon: Mixed-Modal Early-Fusion Foundation Models
论文链接:https://arxiv.org/abs/2405.09818
论文标题:Towards Modular LLMs by Building and Reusing a Library of LoRAs
论文链接:https://arxiv.org/abs/2405.11157
论文标题:SLAB: Efficient Transformers with Simplified Linear Attention and Progressive Re-parameterized Batch Normalization
论文链接:https://arxiv.org/abs/2405.11582
论文标题:MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning
论文链接:https://arxiv.org/abs/2405.12130
论文标题:Attention as an RNN
论文链接:https://arxiv.org/abs/2405.13956
论文标题:Dense Connector for MLLMs
论文链接:https://arxiv.org/abs/2405.13800
论文标题:AlignGPT: Multi-modal Large Language Models with Adaptive Alignment Capability
论文链接:https://arxiv.org/abs/2405.14129
论文标题:SimPO: Simple Preference Optimization with a Reference-Free Reward
论文链接:https://arxiv.org/abs/2405.14734
论文标题:Instruction Tuning With Loss Over Instructions
论文链接:https://arxiv.org/abs/2405.14394
论文标题:The Road Less Scheduled
论文链接:https://arxiv.org/abs/2405.15682
论文标题:Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training
论文链接:https://arxiv.org/abs/2405.15319
论文标题:gzip Predicts Data-dependent Scaling Laws
论文链接:https://arxiv.org/abs/2405.16684
论文标题:Trans-LoRA: Towards Data-free Transferable Parameter Efficient Finetuning
论文链接:https://arxiv.org/abs/2405.17258
论文标题:VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
论文链接:https://arxiv.org/abs/2405.17991
论文标题:LLaMA-NAS: Efficient Neural Architecture Search for Large Language Models
论文链接:https://arxiv.org/abs/2405.18377
论文标题:Contextual Position Encoding: Learning to Count What’s Important
论文链接:https://arxiv.org/abs/2405.18719
六月论文
论文标题:Show, Don’t Tell: Aligning Language Models with Demonstrated Feedback
论文链接:https://arxiv.org/abs/2406.00888
论文标题:Skywork-MoE: A Deep Dive into Training Techniques for Mixture-of-Experts Language Models
论文链接:https://arxiv.org/abs/2406.06563
论文标题:OLoRA: Orthonormal Low-Rank Adaptation of Large Language Models
论文链接:https://arxiv.org/abs/2406.01775
论文标题:The Geometry of Categorical and Hierarchical Concepts in Large Language Models
论文链接:https://arxiv.org/abs/2406.01506
论文标题:Towards Scalable Automated Alignment of LLMs: A Survey
论文链接:https://arxiv.org/abs/2406.01252
论文标题:Scalable MatMul-free Language Modeling
论文链接:https://arxiv.org/abs/2406.02528
论文标题:Block Transformer: Global-to-Local Language Modeling for Fast Inference
论文链接:https://arxiv.org/abs/2406.02657
论文标题:Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models
论文链接:https://arxiv.org/abs/2406.04271
论文标题:The Prompt Report: A Systematic Survey of Prompting Techniques
论文链接:https://arxiv.org/abs/2406.06608
论文标题:Transformers Need Glasses! Information Over-Squashing in Language Tasks
论文链接:https://arxiv.org/abs/2406.04267
论文标题:Are We Done with MMLU?
论文链接:https://arxiv.org/abs/2406.04127
论文标题:Step-aware Preference Optimization: Aligning Preference with Denoising Performance at Each Step
论文链接:https://arxiv.org/abs/2406.04314
论文标题:Boosting Large-scale Parallel Training Efficiency with C4: A Communication-Driven Approach
论文链接:https://arxiv.org/abs/2406.04594
论文标题:CRAG – Comprehensive RAG Benchmark
论文链接:https://arxiv.org/abs/2406.04744
论文标题:WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild
论文链接:https://arxiv.org/abs/2406.04770
论文标题:Mixture-of-Agents Enhances Large Language Model Capabilities
论文链接:https://arxiv.org/abs/2406.04692
论文标题:BERTs are Generative In-Context Learners
论文链接:https://arxiv.org/abs/2406.04823
论文标题:3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination
论文链接:https://arxiv.org/abs/2406.05132
论文标题:Creativity Has Left the Chat: The Price of Debiasing Language Models
论文链接:https://arxiv.org/abs/2406.05587
论文标题:Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation
论文链接:https://arxiv.org/abs/2406.06525
论文标题:Margin-aware Preference Optimization for Aligning Diffusion Models Without Reference
论文链接:https://arxiv.org/abs/2406.06424
论文标题:Husky: A Unified, Open-Source Language Agent for Multi-Step Reasoning
论文链接:https://arxiv.org/abs/2406.06469
论文标题:Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters
论文链接:https://arxiv.org/abs/2406.05955
论文标题:Self-Tuning: Instructing LLMs to Effectively Acquire New Knowledge through Self-Teaching
论文链接:https://arxiv.org/abs/2406.06326
论文标题:An Image is Worth 32 Tokens for Reconstruction and Generation
论文链接:https://arxiv.org/abs/2406.07550
论文标题:TextGrad: Automatic “Differentiation” via Text
论文链接:https://arxiv.org/abs/2406.07496
论文标题:Simple and Effective Masked Diffusion Language Models
论文链接:https://arxiv.org/abs/2406.07524
论文标题:Never Miss A Beat: An Efficient Recipe for Context Window Extension of Large Language Models with Consistent “Middle” Enhancement
论文链接:https://arxiv.org/abs/2406.07138
论文标题:Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling
论文链接:https://arxiv.org/abs/2406.07522
论文标题:Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing
论文链接:https://arxiv.org/abs/2406.08464
论文标题:What If We Recaption Billions of Web Images with LLaMA-3?
论文链接:https://arxiv.org/abs/2406.08478
论文标题:Large Language Model Unlearning via Embedding-Corrupted Prompts
论文链接:https://arxiv.org/abs/2406.07933
论文标题:Large Language Models Must Be Taught to Know What They Don’t Know
论文链接:https://arxiv.org/abs/2406.08391
论文标题:An Empirical Study of Mamba-based Language Models
论文链接:https://arxiv.org/abs/2406.07887
论文标题:Discovering Preference Optimization Algorithms with and for Large Language Models
论文链接:https://arxiv.org/abs/2406.08414
论文标题:Transformers Meet Neural Algorithmic Reasoners
论文链接:https://arxiv.org/abs/2406.09308
论文标题:MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding
论文链接:https://arxiv.org/abs/2406.09297
论文标题:An Image is Worth More Than 16x16 Patches: Exploring Transformers on Individual Pixels
论文链接:https://arxiv.org/abs/2406.09415
论文标题:FouRA: Fourier Low Rank Adaptation
论文链接:https://arxiv.org/abs/2406.08798
论文标题:Bootstrapping Language Models with DPO Implicit Rewards
论文链接:https://arxiv.org/abs/2406.09760
论文标题:Be like a Goldfish, Don’t Memorize! Mitigating Memorization in Generative LLMs
论文链接:https://arxiv.org/abs/2406.10209
论文标题:Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs
论文链接:https://arxiv.org/abs/2406.10216
论文标题:THEANINE: Revisiting Memory Management in Long-term Conversations with Timeline-augmented Response Generation
论文链接:https://arxiv.org/abs/2406.10996
论文标题:Task Me Anything
论文链接:https://arxiv.org/abs/2406.11775
论文标题:How Do Large Language Models Acquire Factual Knowledge During Pretraining?
论文链接:https://arxiv.org/abs/2406.11813
论文标题:mDPO: Conditional Preference Optimization for Multimodal Large Language Models
论文链接:https://arxiv.org/abs/2406.11839
论文标题:Nemotron-4 340B Technical Report
论文链接:https://arxiv.org/abs/2406.11704
论文标题:DataComp-LM: In Search of the Next Generation of Training Sets for Language Models
论文链接:https://arxiv.org/abs/2406.11794
论文标题:Tokenization Falling Short: The Curse of Tokenization
论文链接:https://arxiv.org/abs/2406.11687
论文标题:DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
论文链接:https://arxiv.org/abs/2406.11931
论文标题:Unveiling Encoder-Free Vision-Language Models
论文链接:https://arxiv.org/abs/2406.11832
论文标题:Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level
论文链接:https://arxiv.org/abs/2406.11817
论文标题:HARE: HumAn pRiors, a key to small language model Efficiency
论文链接:https://arxiv.org/abs/2406.11410
论文标题:Measuring memorization in RLHF for code completion
论文链接:https://arxiv.org/abs/2406.11715
论文标题:Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts
论文链接:https://arxiv.org/abs/2406.12034
论文标题:From RAGs to Rich Parameters: Probing How Language Models Utilize External Knowledge Over Parametric Information for Factual Queries
论文链接:https://arxiv.org/abs/2406.12824
论文标题:Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges
论文链接:https://arxiv.org/abs/2406.12624
论文标题:Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?
论文链接:https://arxiv.org/abs/2406.13121
论文标题:Instruction Pre-Training: Language Models are Supervised Multitask Learners
论文链接:https://arxiv.org/abs/2406.14491
论文标题:Can LLMs Learn by Teaching? A Preliminary Study
论文链接:https://arxiv.org/abs/2406.14629
论文标题:A Tale of Trust and Accuracy: Base vs. Instruct LLMs in RAG Systems
论文链接:https://arxiv.org/abs/2406.14972
论文标题:LongRAG: Enhancing Retrieval-Augmented Generation with Long-context LLMs
论文链接:https://arxiv.org/abs/2406.15319
论文标题:MoA: Mixture of Sparse Attention for Automatic Large Language Model Compression
论文链接:https://arxiv.org/abs/2406.14909
论文标题:Efficient Continual Pre-training by Mitigating the Stability Gap
论文链接:https://arxiv.org/abs/2406.14833
论文标题:Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers
论文链接:https://arxiv.org/abs/2406.16747
论文标题:WARP: On the Benefits of Weight Averaged Rewarded Policies
论文链接:https://arxiv.org/abs/2406.16768
论文标题:Adam-mini: Use Fewer Learning Rates To Gain More
论文链接:https://arxiv.org/abs/2406.16793
论文标题:The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale
论文链接:https://arxiv.org/abs/2406.17557
论文标题:LongIns: A Challenging Long-context Instruction-based Exam for LLMs
论文链接:https://arxiv.org/abs/2406.17588
论文标题:Following Length Constraints in Instructions
论文链接:https://arxiv.org/abs/2406.17744
论文标题:A Closer Look into Mixture-of-Experts in Large Language Models
论文链接:https://arxiv.org/abs/2406.18219
论文标题:RouteLLM: Learning to Route LLMs with Preference Data
论文链接:https://arxiv.org/abs/2406.18665
论文标题:Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs
论文链接:https://arxiv.org/abs/2406.18629
论文标题:Dataset Size Recovery from LoRA Weights
论文链接:https://arxiv.org/abs/2406.19395
论文标题:From Artificial Needles to Real Haystacks: Improving Retrieval Capabilities in LLMs by Finetuning on Synthetic Data
论文链接:https://arxiv.org/abs/2406.19292
论文标题:Changing Answer Order Can Decrease MMLU Accuracy
论文链接:https://arxiv.org/abs/2406.19470
论文标题:Direct Preference Knowledge Distillation for Large Language Models
论文链接:https://arxiv.org/abs/2406.19774
论文标题:LLM Critics Help Catch LLM Bugs
论文链接:https://arxiv.org/abs/2407.00215
论文标题:Scaling Synthetic Data Creation with 1,000,000,000 Personas
论文链接:https://arxiv.org/abs/2406.20094
七月论文
论文标题:LLM See, LLM Do: Guiding Data Generation to Target Non-Differentiable Objectives
论文链接:https://arxiv.org/abs/2407.01490
论文标题:Searching for Best Practices in Retrieval-Augmented Generation
论文链接:https://arxiv.org/abs/2407.01219
论文标题:Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models
论文链接:https://arxiv.org/abs/2407.01906
论文标题:Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion
论文链接:https://arxiv.org/abs/2407.01392
论文标题:Eliminating Position Bias of Language Models: A Mechanistic Approach
论文链接:https://arxiv.org/abs/2407.01100
论文标题:JMInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention
论文链接:https://arxiv.org/abs/2407.02490
论文标题:TokenPacker: Efficient Visual Projector for Multimodal LLM
论文链接:https://arxiv.org/abs/2407.02392
论文标题:Reasoning in Large Language Models: A Geometric Perspective
论文链接:https://arxiv.org/abs/2407.02678
论文标题:RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
论文链接:https://arxiv.org/abs/2407.02485
论文标题:AgentInstruct: Toward Generative Teaching with Agentic Flows
论文链接:https://arxiv.org/abs/2407.03502
论文标题:HEMM: Holistic Evaluation of Multimodal Foundation Models
论文链接:https://arxiv.org/abs/2407.03418
论文标题:Mixture of A Million Experts
论文链接:https://arxiv.org/abs/2407.04153
论文标题:Learning to (Learn at Test Time): RNNs with Expressive Hidden States
论文链接:https://arxiv.org/abs/2407.04620
论文标题:Vision Language Models Are Blind
论文链接:https://arxiv.org/abs/2407.06581
论文标题:Self-Recognition in Language Models
论文链接:https://arxiv.org/abs/2407.06946
论文标题:Inference Performance Optimization for Large Language Models on CPUs
论文链接:https://arxiv.org/abs/2407.07304
论文标题:Gradient Boosting Reinforcement Learning
论文链接:https://arxiv.org/abs/2407.08250
论文标题:FlashAttention-3: Fast and Accurate Attention with Asynchrony and Low-precision
论文链接:https://arxiv.org/abs/2407.08608
论文标题:SpreadsheetLLM: Encoding Spreadsheets for Large Language Models
论文链接:https://arxiv.org/abs/2407.09025
论文标题:New Desiderata for Direct Preference Optimization
论文链接:https://arxiv.org/abs/2407.09072
论文标题:Context Embeddings for Efficient Answer Generation in RAG
论文链接:https://arxiv.org/abs/2407.09252
论文标题:Qwen2 Technical Report
论文链接:https://arxiv.org/abs/2407.10671
论文标题:The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism
论文链接:https://arxiv.org/abs/2407.10457
论文标题:From GaLore to WeLore: How Low-Rank Weights Non-uniformly Emerge from Low-Rank Gradients
论文链接:https://arxiv.org/abs/2407.11239
论文标题:GoldFinch: High Performance RWKV/Transformer Hybrid with Linear Pre-Fill and Extreme KV-Cache Compression
论文链接:https://arxiv.org/abs/2407.12077
论文标题:Scaling Diffusion Transformers to 16 Billion Parameters
论文链接:https://arxiv.org/abs/2407.11633
论文标题:NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window?
论文链接:https://arxiv.org/abs/2407.11963
论文标题:Patch-Level Training for Large Language Models
论文链接:https://arxiv.org/abs/2407.12665
论文标题:LMMs-Eval: Reality Check on the Evaluation of Large Multimodal Models
论文链接:https://arxiv.org/abs/2407.12772
论文标题:A Survey of Prompt Engineering Methods in Large Language Models for Different NLP Tasks
论文链接:https://arxiv.org/abs/2407.12994
论文标题:Spectra: A Comprehensive Study of Ternary, Quantized, and FP16 Language Models
论文链接:https://arxiv.org/abs/2407.12327
论文标题:Attention Overflow: Language Model Input Blur during Long-Context Missing Items Recommendation
论文链接:https://arxiv.org/abs/2407.13481
论文标题:Weak-to-Strong Reasoning
论文链接:https://arxiv.org/abs/2407.13647
论文标题:Understanding Reference Policies in Direct Preference Optimization
论文链接:https://arxiv.org/abs/2407.13709
论文标题:Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies
论文链接:https://arxiv.org/abs/2407.13623
论文标题:BOND: Aligning LLMs with Best-of-N Distillation
论文链接:https://arxiv.org/abs/2407.14622
论文标题:Compact Language Models via Pruning and Knowledge Distillation
论文链接:https://arxiv.org/abs/2407.14679
论文标题:LazyLLM: Dynamic Token Pruning for Efficient Long Context LLM Inference
论文链接:https://arxiv.org/abs/2407.14057
论文标题:Mini-Sequence Transformer: Optimizing Intermediate Memory for Long Sequences Training
论文链接:https://arxiv.org/abs/2407.15892
论文标题:DDK: Distilling Domain Knowledge for Efficient Large Language Models
论文链接:https://arxiv.org/abs/2407.16154
论文标题:Generation Constraint Scaling Can Mitigate Hallucination
论文链接:https://arxiv.org/abs/2407.16908
论文标题:Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach
论文链接:https://arxiv.org/abs/2407.16833
论文标题:Course-Correction: Safety Alignment Using Synthetic Preferences
论文链接:https://arxiv.org/abs/2407.16637
论文标题:Data Mixture Inference: What do BPE Tokenizers Reveal about their Training Data?
论文链接:https://arxiv.org/abs/2407.16607
论文标题:Meta-Rewarding Language Models: Self-Improving Alignment with LLM-as-a-Meta-Judge
论文链接:https://arxiv.org/abs/2407.19594
论文标题:Improving Retrieval Augmented Language Model with Self-Reasoning
论文链接:https://arxiv.org/abs/2407.19813
论文标题:Apple Intelligence Foundation Language Models
论文链接:https://arxiv.org/abs/2407.21075
论文标题:ThinK: Thinner Key Cache by Query-Driven Pruning
论文链接:https://arxiv.org/abs/2407.21018
论文标题:The Llama 3 Herd of Models
论文链接:https://arxiv.org/abs/2407.21783
论文标题:Gemma 2: Improving Open Language Models at a Practical Size
论文链接:https://arxiv.org/abs/2408.00118
八月论文
论文标题:SAM 2: Segment Anything in Images and Videos
论文链接:https://arxiv.org/abs/2408.00714
论文标题:POA: Pre-training Once for Models of All Sizes
论文链接:https://arxiv.org/abs/2408.01031
论文标题:RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework
论文链接:https://arxiv.org/abs/2408.01262
论文标题:A Survey of Mamba
论文链接:https://arxiv.org/abs/2408.01129
论文标题:MiniCPM-V: A GPT-4V Level MLLM on Your Phone
论文链接:https://arxiv.org/abs/2408.01800
论文标题:RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation
论文链接:https://arxiv.org/abs/2408.02545
论文标题:Self-Taught Evaluators
论文链接:https://arxiv.org/abs/2408.02666
论文标题:BioMamba: A Pre-trained Biomedical Language Representation Model Leveraging Mamba
论文链接:https://arxiv.org/abs/2408.02600
论文标题:EXAONE 3.0 7.8B Instruction Tuned Language Model
论文链接:https://arxiv.org/abs/2408.03541
论文标题:1.5-Pints Technical Report: Pretraining in Days, Not Months – Your Language Model Thrives on Quality Data
论文链接:https://arxiv.org/abs/2408.03506
论文标题:Conversational Prompt Engineering
论文链接:https://arxiv.org/abs/2408.04560
论文标题:Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP
论文链接:https://arxiv.org/abs/2408.04303
论文标题:The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery
论文链接:https://arxiv.org/abs/2408.06292
论文标题:Hermes 3 Technical Report
论文链接:https://arxiv.org/abs/2408.12570
论文标题:Customizing Language Models with Instance-wise LoRA for Sequential Recommendation
论文链接:https://arxiv.org/abs/2408.10159
论文标题:Enhancing Robustness in Large Language Models: Prompting for Mitigating the Impact of Irrelevant Information
论文链接:https://arxiv.org/abs/2408.10615
论文标题:To Code, or Not To Code? Exploring Impact of Code in Pre-training
论文链接:https://arxiv.org/abs/2408.10914
论文标题:LLM Pruning and Distillation in Practice: The Minitron Approach
论文链接:https://arxiv.org/abs/2408.11796
论文标题:Jamba-1.5: Hybrid Transformer-Mamba Models at Scale
论文链接:https://arxiv.org/abs/2408.12570
论文标题:Controllable Text Generation for Large Language Models: A Survey
论文链接:https://arxiv.org/abs/2408.12599
论文标题:Multi-Layer Transformers Gradient Can be Approximated in Almost Linear Time
论文链接:https://arxiv.org/abs/2408.13233
论文标题:A Practitioner's Guide to Continual Multimodal Pretraining
论文链接:https://arxiv.org/abs/2408.14471
论文标题:Building and better understanding vision-language models: insights and future directions
论文链接:https://arxiv.org/abs/2408.12637
论文标题:CURLoRA: Stable LLM Continual Fine-Tuning and Catastrophic Forgetting Mitigation
论文链接:https://arxiv.org/abs/2408.14572
论文标题:The Mamba in the Llama: Distilling and Accelerating Hybrid Models
论文链接:https://arxiv.org/abs/2408.15237
论文标题:ReMamba: Equip Mamba with Effective Long-Sequence Modeling
论文链接:https://arxiv.org/abs/2408.15496
论文标题:Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling
论文链接:https://arxiv.org/abs/2408.16737
论文标题:LongRecipe: Recipe for Efficient Long Context Generalization in Large Languge Models
论文链接:https://arxiv.org/abs/2409.00509
九月论文
论文标题:OLMoE: Open Mixture-of-Experts Language Models
论文链接:https://arxiv.org/abs/2409.02060
论文标题:In Defense of RAG in the Era of Long-Context Language Models
论文链接:https://arxiv.org/abs/2409.01666
论文标题:Attention Heads of Large Language Models: A Survey
论文链接:https://arxiv.org/abs/2409.03752
论文标题:LongCite: Enabling LLMs to Generate Fine-grained Citations in Long-context QA
论文链接:https://arxiv.org/abs/2409.02897
论文标题:How Do Your Code LLMs Perform? Empowering Code Instruction Tuning with High-Quality Data
论文链接:https://arxiv.org/abs/2409.03810
论文标题:Theory, Analysis, and Best Practices for Sigmoid Self-Attention
论文链接:https://arxiv.org/abs/2409.04431
论文标题:LLaMA-Omni: Seamless Speech Interaction with Large Language Models
论文链接:https://arxiv.org/abs/2409.06666
论文标题:What is the Role of Small Models in the LLM Era: A Survey
论文链接:https://arxiv.org/abs/2409.06857
论文标题:Policy Filtration in RLHF to Fine-Tune LLM for Code Generation
论文链接:https://arxiv.org/abs/2409.06957
论文标题:RetrievalAttention: Accelerating Long-Context LLM Inference via Vector Retrieval
论文链接:https://arxiv.org/abs/2409.10516
论文标题:Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement
论文链接:https://arxiv.org/abs/2409.12122
论文标题:Qwen2.5-Coder Technical Report
论文链接:https://arxiv.org/abs/2409.12186
论文标题:Instruction Following without Instruction Tuning
论文链接:https://arxiv.org/abs/2409.14254
论文标题:Is Preference Alignment Always the Best Option to Enhance LLM-Based Translation? An Empirical Analysis
论文链接:https://arxiv.org/abs/2409.20059
论文标题:The Perfect Blend: Redefining RLHF with Mixture of Judges
论文链接:https://arxiv.org/abs/2409.20370
十月论文
论文标题:Addition is All You Need for Energy-efficient Language Models
论文链接:https://arxiv.org/abs/2410.00907
论文标题:Quantifying Generalization Complexity for Large Language Models
论文链接:https://arxiv.org/abs/2410.01769
论文标题:When a language model is optimized for reasoning, does it still show embers of autoregression? An analysis of OpenAI o1
论文链接:https://arxiv.org/abs/2410.01792
论文链接:https://arxiv.org/abs/2410.01201
论文标题:Selective Attention Improves Transformer
论文链接:https://arxiv.org/abs/2410.02703
论文标题:LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hallucinations
论文链接:https://arxiv.org/abs/2410.02707
论文标题:LLaVA-Critic: Learning to Evaluate Multimodal Models
论文链接:https://arxiv.org/abs/2410.02712
论文标题:Differential Transformer
论文链接:https://arxiv.org/abs/2410.05258
论文标题:GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models
论文链接:https://arxiv.org/abs/2410.05229
论文标题:ARIA: An Open Multimodal Native Mixture-of-Experts Model
论文链接:https://arxiv.org/abs/2410.05993
论文标题:O1 Replication Journey: A Strategic Progress Report – Part 1
论文链接:https://arxiv.org/abs/2410.18982
论文标题:Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG
论文链接:https://arxiv.org/abs/2410.05983
论文标题:From Generalist to Specialist: Adapting Vision Language Models via Task-Specific Visual Instruction Tuning
论文链接:https://arxiv.org/abs/2410.06456
论文标题:KV Prediction for Improved Time to First Token
论文链接:https://arxiv.org/abs/2410.08391
论文标题:Baichuan-Omni Technical Report
论文链接:https://arxiv.org/abs/2410.08565
论文标题:MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models
论文链接:https://arxiv.org/abs/2410.10139
论文标题:LOKI: A Comprehensive Synthetic Data Detection Benchmark using Large Multimodal Models
论文链接:https://arxiv.org/abs/2410.09732
论文标题:AFlow: Automating Agentic Workflow Generation
论文链接:https://arxiv.org/abs/2410.10762
论文标题:Toward General Instruction-Following Alignment for Retrieval-Augmented Generation
论文链接:https://arxiv.org/abs/2410.09584
论文标题:Pre-training Distillation for Large Language Models: A Design Space Exploration
论文链接:https://arxiv.org/abs/2410.16215
论文标题:MIA-DPO: Multi-Image Augmented Direct Preference Optimization For Large Vision-Language Models
论文链接:https://arxiv.org/abs/2410.17637
论文标题:Scalable Ranked Preference Optimization for Text-to-Image Generation
论文链接:https://arxiv.org/abs/2410.18013
论文标题:Scaling Diffusion Language Models via Adaptation from Autoregressive Models
论文链接:https://arxiv.org/abs/2410.17891
论文标题:Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback
论文链接:https://arxiv.org/abs/2410.19133
论文标题:Counting Ability of Large Language Models and Impact of Tokenization
论文链接:https://arxiv.org/abs/2410.19730
论文标题:A Survey of Small Language Models
论文链接:https://arxiv.org/abs/2410.20011
论文标题:Accelerating Direct Preference Optimization with Prefix Sharing
论文链接:https://arxiv.org/abs/2410.20305
论文标题:Mind Your Step (by Step): Chain-of-Thought can Reduce Performance on Tasks where Thinking Makes Humans Worse
论文链接:https://arxiv.org/abs/2410.21333
论文标题:LongReward: Improving Long-context Large Language Models with AI Feedback
论文链接:https://arxiv.org/abs/2410.21252
论文标题:ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
论文链接:https://arxiv.org/abs/2410.21465
论文标题:Beyond Text: Optimizing RAG with Multimodal Inputs for Industrial Applications
论文链接:https://arxiv.org/abs/2410.21943
论文标题:CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation
论文链接:https://arxiv.org/abs/2410.23090
论文标题:What Happened in LLMs Layers when Trained for Fast vs. Slow Thinking: A Gradient Perspective
论文链接:https://arxiv.org/abs/2410.23743
论文标题:GPT or BERT: why not both?
论文链接:https://arxiv.org/abs/2410.24159
论文标题:Language Models can Self-Lengthen to Generate Long Texts
论文链接:https://arxiv.org/abs/2410.23933
十一月论文
论文标题:Adding Error Bars to Evals: A Statistical Approach to Language Model Evaluations
论文链接:https://arxiv.org/abs/2411.00640
论文标题:Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation
论文链接:https://arxiv.org/abs/2411.00412
论文标题:Multi-expert Prompting Improves Reliability, Safety, and Usefulness of Large Language Models
论文链接:https://arxiv.org/abs/2411.00492
论文标题:Sample-Efficient Alignment for LLMs
论文链接:https://arxiv.org/abs/2411.01493
论文标题:A Comprehensive Survey of Small Language Models in the Era of Large Language Models: Techniques, Enhancements, Applications, Collaboration with LLMs, and Trustworthiness
论文链接:https://arxiv.org/abs/2411.03350
论文标题:"Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization
论文链接:https://arxiv.org/abs/2411.02355
论文标题:Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study
论文链接:https://arxiv.org/abs/2411.02462
论文标题:HtmlRAG: HTML is Better Than Plain Text for Modeling Retrieved Knowledge in RAG Systems
论文链接:https://arxiv.org/abs/2411.02959
论文标题:Both Text and Images Leaked! A Systematic Analysis of Multimodal LLM Data Contamination
论文链接:https://arxiv.org/abs/2411.03823
论文标题:Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding
论文链接:https://arxiv.org/abs/2411.04282
论文标题:Number Cookbook: Number Understanding of Language Models and How to Improve It
论文链接:https://arxiv.org/abs/2411.03766
论文标题:Mixture-of-Transformers: A Sparse and Scalable Architecture for Multi-Modal Foundation Models
论文链接:https://arxiv.org/abs/2411.04996
论文标题:BitNet a4.8: 4-bit Activations for 1-bit LLMs
论文链接:https://arxiv.org/abs/2411.04965
论文标题:Scaling Laws for Precision
论文链接:https://arxiv.org/abs/2411.04330
论文标题:Energy Efficient Protein Language Models: Leveraging Small Language Models with LoRA for Controllable Protein Generation
论文链接:https://arxiv.org/abs/2411.05966
论文标题:Balancing Pipeline Parallelism with Vocabulary Parallelism
论文链接:https://arxiv.org/abs/2411.05288
论文标题:Toward Optimal Search and Retrieval for RAG
论文链接:https://arxiv.org/abs/2411.07396
论文标题:Large Language Models Can Self-Improve in Long-context Reasoning
论文链接:https://arxiv.org/abs/2411.08147
论文标题:Stronger Models are NOT Stronger Teachers for Instruction Tuning
论文链接:https://arxiv.org/abs/2411.07133
论文标题:Direct Preference Optimization Using Sparse Feature-Level Constraints
论文链接:https://arxiv.org/abs/2411.07618
论文标题:Cut Your Losses in Large-Vocabulary Language Models
论文链接:https://arxiv.org/abs/2411.09009
论文标题:Does Prompt Formatting Have Any Impact on LLM Performance?
论文链接:https://arxiv.org/abs/2411.10541
论文标题:SymDPO: Boosting In-Context Learning of Large Multimodal Models with Symbol Demonstration Direct Preference Optimization
论文链接:https://arxiv.org/abs/2411.11909
论文标题:SageAttention2 Technical Report: Accurate 4 Bit Attention for Plug-and-play Inference Acceleration
论文链接:https://arxiv.org/abs/2411.10958
论文标题:Bi-Mamba: Towards Accurate 1-Bit State Space Models
论文链接:https://arxiv.org/abs/2411.11843
论文标题:RedPajama: an Open Dataset for Training Large Language Models
论文链接:https://arxiv.org/abs/2411.12372
论文标题:Hymba: A Hybrid-head Architecture for Small Language Models
论文链接:https://arxiv.org/abs/2411.13676
论文标题:Loss-to-Loss Prediction: Scaling Laws for All Datasets
论文链接:https://arxiv.org/abs/2411.12925
论文标题:When Precision Meets Position: BFloat16 Breaks Down RoPE in Long-Context Training
论文链接:https://arxiv.org/abs/2411.13476
论文标题:Multimodal Autoregressive Pre-training of Large Vision Encoders
论文链接:https://arxiv.org/abs/2411.14402
论文标题:Natural Language Reinforcement Learning
论文链接:https://arxiv.org/abs/2411.14251
论文标题:Large Multi-modal Models Can Interpret Features in Large Multi-modal Models
论文链接:https://arxiv.org/abs/2411.14982
论文标题:TÜLU 3: Pushing Frontiers in Open Language Model Post-Training
论文链接:https://arxiv.org/abs/2411.15124
论文标题:MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs
论文链接:https://arxiv.org/abs/2411.15296
论文标题:LLMs Do Not Think Step-by-step In Implicit Reasoning
论文链接:https://arxiv.org/abs/2411.15862
论文标题:O1 Replication Journey – Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson?
论文链接:https://arxiv.org/abs/2411.16489
论文标题:Star Attention: Efficient LLM Inference over Long Sequences
论文链接:https://arxiv.org/abs/2411.17116
论文标题:Low-Bit Quantization Favors Undertrained LLMs: Scaling Laws for Quantized LLMs with 100T Training Tokens
论文链接:https://arxiv.org/abs/2411.17691
论文标题:Rethinking Token Reduction in MLLMs: Towards a Unified Paradigm for Training-Free Acceleration
论文链接:https://arxiv.org/abs/2411.17686
论文标题:Reverse Thinking Makes LLMs Stronger Reasoners
论文链接:https://arxiv.org/abs/2411.19865
论文标题:Critical Tokens Matter: Token-Level Contrastive Estimation Enhances LLM's Reasoning Capability
论文链接:https://arxiv.org/abs/2411.19943
十二月论文
论文标题:Designing Scale-Wise Transformers for Text-to-Image Synthesis
论文链接:https://arxiv.org/abs/2412.01819
论文标题:X-Prompt: Towards Universal In-Context Image Generation in Auto-Regressive Vision Language Foundation Models
论文链接:https://arxiv.org/abs/2412.01824
论文标题:Free Process Rewards without Process Labels
论文链接:https://arxiv.org/abs/2412.01981
论文标题:Scaling Image Tokenizers with Grouped Spherical Quantization
论文链接:https://arxiv.org/abs/2412.02632
论文标题:RARE: Retrieval-Augmented Reasoning Enhancement for Large Language Models
论文链接:https://arxiv.org/abs/2412.02830
论文标题:Perception Tokens Enhance Visual Reasoning in Multimodal Language Models
论文链接:https://arxiv.org/abs/2412.03548
论文标题:Evaluating Language Models as Synthetic Data Generators
论文链接:https://arxiv.org/abs/2412.03679
论文标题:Best-of-N Jailbreaking
论文链接:https://arxiv.org/abs/2412.03556
论文标题:PaliGemma 2: A Family of Versatile VLMs for Transfer
论文链接:https://arxiv.org/abs/2412.03555
论文标题:VisionZip: Longer is Better but Not Necessary in Vision Language Models
论文链接:https://arxiv.org/abs/2412.04467
论文标题:Evaluating and Aligning CodeLLMs on Human Preference
论文链接:https://arxiv.org/abs/2412.05210
论文标题:MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale
论文链接:https://arxiv.org/abs/2412.05237
论文标题:Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling
论文链接:https://arxiv.org/abs/2412.05271
论文标题:LLMs-as-Judges: A Comprehensive Survey on LLM-based Evaluation Methods
论文链接:https://arxiv.org/abs/2412.05579
论文标题:Does RLHF Scale? Exploring the Impacts From Data, Model, and Method
论文链接:https://arxiv.org/abs/2412.06000
论文标题:Unraveling the Complexity of Memory in RL Agents: An Approach for Classification and Evaluation
论文链接:https://arxiv.org/abs/2412.06531
论文标题:Training Large Language Models to Reason in a Continuous Latent Space
论文链接:https://arxiv.org/abs/2412.06769
论文标题:AutoReason: Automatic Few-Shot Reasoning Decomposition
论文链接:https://arxiv.org/abs/2412.06975
论文标题:Large Concept Models: Language Modeling in a Sentence Representation Space
论文链接:https://arxiv.org/abs/2412.08821
论文标题:Phi-4 Technical Report
论文链接:https://arxiv.org/abs/2412.08905
论文标题:Byte Latent Transformer: Patches Scale Better Than Tokens
论文链接:https://arxiv.org/abs/2412.09871
论文标题:SCBench: A KV Cache-Centric Analysis of Long-Context Methods
论文链接:https://arxiv.org/abs/2412.10319
论文标题:Cultural Evolution of Cooperation among LLM Agents
论文链接:https://arxiv.org/abs/2412.10270
论文标题:DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding
论文链接:https://arxiv.org/abs/2412.10302
论文标题:No More Adam: Learning Rate Scaling at Initialization is All You Need
论文链接:https://arxiv.org/abs/2412.11768
论文标题:Precise Length Control in Large Language Models
论文链接:https://arxiv.org/abs/2412.11937
论文标题:The Open Source Advantage in Large Language Models (LLMs)
论文链接:https://arxiv.org/abs/2412.12004
论文标题:A Survey of Mathematical Reasoning in the Era of Multimodal Large Language Model: Benchmark, Method & Challenges
论文链接:https://arxiv.org/abs/2412.11936
论文标题:Are Your LLMs Capable of Stable Reasoning?
论文链接:https://arxiv.org/abs/2412.13147
论文标题:LLM Post-Training Recipes, Improving Reasoning in LLMs
论文链接:https://arxiv.org/abs/2412.14135
论文标题:Hansel: Output Length Controlling Framework for Large Language Models
论文链接:https://arxiv.org/abs/2412.14033
论文标题:Mind Your Theory: Theory of Mind Goes Deeper Than Reasoning
论文链接:https://arxiv.org/abs/2412.1363
论文标题:Alignment Faking in Large Language Models
论文链接:https://arxiv.org/abs/2412.14093
论文标题:SCOPE: Optimizing Key-Value Cache Compression in Long-Context Generation
论文链接:https://arxiv.org/abs/2412.13649
论文标题:LongBench v2: Towards Deeper Understanding and Reasoning on Realistic Long-Context Multitasks
论文链接:https://arxiv.org/abs/2412.15204
论文标题:Offline Reinforcement Learning for LLM Multi-Step Reasoning
论文链接:https://arxiv.org/abs/2412.16145
论文标题:Mulberry: Empowering MLLM with O1-like Reasoning and Reflection via Collective Monte Carlo Tree Search
论文链接:https://arxiv.org/abs/2412.18319
公众号后台回复“数据集”获取100+深度学习各方向资源整理
极市干货
点击阅读原文进入CV社区
收获更多技术干货