一文了解半导体封装以及封装用电子胶粘剂

企业   2024-11-15 09:28   河南  

↑ 点击上方中国胶粘剂网关注我们


半导体制造的工艺过程由晶圆制造(Wafer Fabr ication)、晶圆测试(wafer Probe/Sorting)、芯片封装(Assemble)、测试(Test)以及后期的成品(Finish Goods)入库所组成。



半导体器件制作工艺分为前道和后道工序,晶圆制造和测试被称为前道(Front End)工序,而芯片的封装、测试及成品入库则被称为后道(Back End)工序,前道和后道一般在不同的工厂分开处理。


前道工序是从整块硅圆片入手经多次重复的制膜、氧化、扩散,包括照相制版和光刻等工序,制成三极管、集成电路等半导体元件及电极等,开发材料的电子功能,以实现所要求的元器件特性。


后道工序是从由硅圆片分切好的一个一个的芯片入手,进行装片、固定、键合联接、塑料灌封、引出接线端子、按印检查等工序,完成作为器件、部件的封装体,以确保元器件的可靠性,并便于与外电路联接。


半导体制造工艺和流程


晶圆制造

晶圆制造主要是在晶圆上制作电路与镶嵌电子元件(如电晶体、电容、逻辑闸等),是所需技术最复杂且资金投入最多的过程。以微处理器为例,其所需处理步骤可达数百道,而且所需加工机器先进且昂贵。虽然详细的处理程序是随着产品种类和使用技术的变化而不断变化,但其基本处理步骤通常是晶圆先经过适当的清洗之后,接着进行氧化及沉积处理,最后进行微影、蚀刻及离子植入等反复步骤,最终完成晶圆上电路的加工与制作。

晶圆测试

晶圆经过划片工艺后,表面上会形成一道一道小格,每个小格就是一个晶片或晶粒(Die),即一个独立的集成电路。在一般情况下,一个晶圆上制作的晶片具有相同的规格,但是也有可能在同一个晶圆上制作规格等级不同的晶片。晶圆测试要完成两个工作:一是对每一个晶片进行验收测试,通过针测仪器(Probe)检测每个晶片是否合格,不合格的晶片会被标上记号,以便在切割晶圆的时候将不合格晶片筛选出来;二是对每个晶片进行电气特性(如功率等)检测和分组,并作相应的区分标记。

芯片封装

首先,将切割好的晶片用胶水贴装到框架衬垫(Substrate)上;其次,利用超细的金属导线或者导电性树脂将晶片的接合焊盘连接到框架衬垫的引脚,使晶片与外部电路相连,构成特定规格的集成电路芯片(Bin);最后对独立的芯片用塑料外壳加以封装保护,以保护芯片元件免受外力损坏。塑封之后,还要进行一系列操作,如后固化(Post Mold Cure)、切筋(Trim)、成型(Form)和电镀(Plating)等工艺。

芯片测试

封装好的芯片成功经过烤机(Burn In)后需要进行深度测试,测试包括初始测试(Initial Test)和最后测试(Final Test)。初始测试就是把封装好的芯片放在各种环境下测试其电气特性(如运行速度、功耗、频率等),挑选出失效的芯片,把正常工作的芯片按照电气特性分为不同的级别。最后测试是对初始测试后的芯片进行级别之间的转换等操作。

成品入库

测试好的芯片经过半成品仓库后进入最后的终加工,包括激光印字、出厂质检、成品封装等,最后入库。


封装的基本定义和内涵

封装(packaging,PKG):主要是在半导体制造的后道工程中完成的。即利用膜技术及微细连接技术,将半导体元器件及其他构成要素在框架或基板上布置、固定及连接,引出接线端子,并通过塑性绝缘介质灌封固定,构成整体主体结构的工艺。

封装工程:是封装与实装工程及基板技术的总和。即将半导体、电子元器件所具有的电子的、物理的功能,转变为适用于机器或系统的形式,并使之为人类社会服务的科学技术,统称为电子封装工程。

封装一词用于电子工程的历史并不长。在真空电子管时代,将电子管等器件安装在管座上构成电路设备一般称为组装或装配,当时还没有封装这一概念。自从三极管、IC等半导体元件的出现,改变了电子工程的历史。一方面,这些半导体元件细小柔嫩;另一方面,其性能又高,而且多功能、多规格。为了充分发挥其功能,需要补强、密封、扩大,以便与外电路实现可靠地电气联接,并得到有效地机械支撑、绝缘、信号传输等方面的保护作用。“封装”的概念正是在此基础上出现的。


封装的功能

封装最基本的功能是保护电路芯片免受周围环境的影响(包括物理、化学的影响)。所以,在最初的微电子封装中,是用金属罐(Metal Can)作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。

一般来说顾客所需要的并不是芯片,而是由芯片和PKG构成的半导体器件。PKG是半导体器件的外缘,是芯片与实装基板间的界面。因此无论PKG的形式如何,封装最主要的功能应是芯片电气特性的保持功能。

通常认为,半导体封装主要有电气特性的保持、芯片保护、应力缓和及尺寸调整配合四大功能,它的作用是实现和保持从集成电路器件到系统之间的连接,包括电学连接和物理连接。目前,集成电路芯片的I/0线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接。芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重,由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。


芯片电气特性的保持功能

通过PKG的进步,满足不断发展的高性能、小型化、高频化等方面的要求,确保其功能性。

芯片保护功能

PKG的芯片保护功能很直观,保护芯片表面以及连接引线等,使在电气或物理等方面相当柔嫩的芯片免受外力损害及外部环境的影响。保证可靠性。

应力缓和功能

由于热等外部环境的影响或者芯片自身发热等都会产生应力,PKG缓解应力,防止发生损坏失效,保证可靠性。

尺寸调整配合(间距变化)功能

由芯片的微细引线间距调整到实装基板的尺寸间距,从而便于实装操作。例如,从亚微米(目前已小于 0.13μm)为特征尺寸的芯片到以10μm为单位的芯片电极凸点,再到以100μm为单位的外部引线端子,最后到以mm为单位的实装基板,都是通过PKG来实现的。在这里PKG起着由小到大、由难到易、由复杂到简单的变换作用。从而可使操作费用及资材费用降低,而且提高工作效率和可靠性。保证实用性或通用性。


封装的范围

微电子封装的三个层次

通常,从FAB厂制造的晶圆开始,可以将电子封装,按照制造的时间先后顺序分为三个层次。


微电子封装的三个层次

一级封装

一级封装是用封装外壳将芯片封装成单芯片组件(SCM)和多芯片组件(MCM)。半导体芯片和封装体的电学互联,通常有三种实现途径,引线键合(WB)、载带自动焊(TAB)和倒装焊(Flip Chip),一级封装的可以使用金属、陶瓷,塑料(聚合物)等包封材料。封装工艺设计需要考虑到单芯片或者多芯片之间的布线,与PCB节距的匹配,封装体的散热情况等。

二级封装

二级封装是印刷电路板的封装和装配,将一级封装的元器件组装到印刷电路板(PCB)上,包括板上封装单元和器件的互连,包括阻抗的控制、连线的精细程度和低介电常数材料的应用。除了特别要求外,这一级封装一般不单独加封装体,具体产品如计算机的显卡,PCI数据采集卡等都属于这一级封装。如果这一级封装能实现某些完整的功能,需要将其安装在同一的壳体中,例如Ni公司的USB数据采集卡,创新的外置USB声卡等。

三级封装

三级封装是将二级封装的组件查到同一块母板上,也就是关于插件接口、主板及组件的互连。这一级封装可以实现密度更高,功能更全组装,通常是一种立体组装技术。例如一台PC的主机,一个NI公司的PXI数据采集系统,汽车的GPS导航仪,这些都属于三级微电子封装的产品。


微电子封装工程和电子基板


微电子封装是一个复杂的系统工程,类型多、范围广,涉及各种各样材料和工艺。可按几何维数将电子封装分解为简单的“点、线、面、体、块、板”等。

电子基板是半导体芯片封装的载体,搭载电子元器件的支撑,构成电子电路的基盘,按其结构可分为普通基板、印制电路板、模块基板等几大类。其中PCB在原有双面板、多层板的基础上,近年来又出现积层(build-up)多层板。模块基板是指新兴发展起来的可以搭载在PCB之上,以BGA、CSP、TAB、MCM为代表的封装基板(Package Substrate,简称PKG基板)。小到芯片、电子元器件,大到电路系统、电子设备整机,都离不开电子基板。近年来在电子基板中,高密度多层基板所占比例越来越大。

微电子封装所涉及的各个方面几乎都是在基板上进行或与基板相关。在电子封装工程所涉及的四大基础技术,即薄厚膜技术、微互连技术、基板技术、封接与封装技术中,基板技术处于关键与核心地位。随着新型高密度封装形式的出现,电子封装的许多功能,如电气连接,物理保护,应力缓和,散热防潮,尺寸过渡,规格化、标准化等,正逐渐部分或全部的由封装基板来承担。


封装技术工艺发展历程:





半导体封装材料

半导体元件的封接或封装方式分为气密性封装和树脂封装两大类,气密性封装又可分为金属封装、陶瓷封装和玻璃封装。封接和封装的目的是与外部温度、湿度、气氛等环境隔绝,除了起保护和电气绝缘作用外,同时还起向外散热及应力缓和作用。一般来说,气密性封装可靠性高,但价格也高。目前由于封装技术及材料的改进,树脂封装已占绝对优势,但在有些特殊领域(军工、航空、航天、航海等),气密性封装是必不可少的。


按封装材料可划分为:金属封装、陶瓷封装(C)、塑料封装(P)。采用前两种封装的半导体产品主要用于航天、航空及军事领域,而塑料封装的半导体产品在民用领域得到了广泛的应用。目前树脂封装已占世界集成电路封装市场的98%,97%以上的半导体器件的封装都采用树脂封装,在消费类电路和器件领域基本上是树脂封装一统天下,而90%以上的塑封料是环氧树脂塑封料和环氧液体灌封料。



芯片电学(零级封装)互连:

在一级封装中,有个很重要的步骤就是将芯片和封装体(进行电学互连的过程,通常称为芯片互连技术或者芯片组装。为了凸显其重要性,有些教科书也将其列为零级封装。也就是将芯片上的焊盘或凸点与封装体通常是引线框架用金属连接起来)。在微电子封装中,半导体器件的失效约有一是由于芯片互连引起的,其中包括芯片互连处的引线的短路和开路等,所以芯片互连对器件的可靠性非常重要。



常见的芯片电学互连有三种方式,分别是引线键合,载带自动焊和倒装焊。

通常,TAB和FC虽然互连的电学性能要比好,但是都需要额外的设备。因此,对于I/O数目较少的芯片,TAB和FC成本很高,另外,在3D封装中,由于芯片堆叠,堆叠的芯片不能都倒扣在封装体上,只能通过WB与封装体之间进行互连。基于这些原因,到目前为止,WB一直是芯片互连的主流技术,在芯片电学互连中占据非常重要的地位。


芯片电学互连(零级封装)的三种方式

引线键合(WB)

引线键合(WB)是将芯片焊盘和对应的封装体上焊盘用细金属丝一一连接起来,每次连接一根,是最简单的一种芯片电学互连技术,按照电气连接方式来看属于有线键合。

载带自动焊(TAB)

载带自动焊(TAB)是一种将IC安装和互连到柔性金属化聚合物载带上的IC组装技术。载带内引线键合到IC上,外引线键合到常规封装或者PCB上,整个过程均自动完成,因此,效率比要高。按照电气连接方式来看属于无线键合方法。

倒装焊(FC)

倒装焊(FC)是指集成电路芯片的有源面朝下与载体或基板进行连接。芯片和基板之间的互连通过芯片上的凸点结构和基板上的键合材料来实现。这样可以同时实现机械互连和电学互连。同时为了提高互连的可靠性,在芯片和基板之间加上底部填料。对于高密度的芯片,倒装焊不论在成本还是性能上都有很强的优势,是芯片电学互连的发展趋势。按照电气连接方式来看属于无线键合方法。


半导体封装的典型封装工艺简介


DIP双列直插式封装

DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。采用DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。

DIP封装具有以下特点:

1.适合在PCB(印刷电路板)上穿孔焊接,操作方便。

2.芯片面积与封装面积之间的比值较大,故体积也较大。

Intel系列CPU中8088就采用这种封装形式,缓存(Cache)和早期的内存芯片也是这种封装形式。


BGA球栅阵列封装

BGA封装

随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当IC的频率超过100MHz时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用BGA(Ball Grid Array Package)封装技术。BGA一出现便成为CPU、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。


BGA封装技术又可详分为五大类:1.PBGA(Plasric BGA)基板:一般为2-4层有机材料构成的多层板。Intel系列CPU中,Pentium II、III、IV处理器均采用这种封装形式。


2.CBGA(CeramicBGA)基板:即陶瓷基板,芯片与基板间的电气连接通常采用倒装芯片(FlipChip,简称FC)的安装方式。Intel系列CPU中,Pentium I、II、Pentium Pro处理器均采用过这种封装形式。


3.FCBGA(FilpChipBGA)基板:硬质多层基板。


4.TBGA(TapeBGA)基板:基板为带状软质的1-2层PCB电路板


5.CDPBGA(Carity Down PBGA)基板:指封装中央有方型低陷的芯片区(又称空腔区)。


BGA封装具有以下特点:

1.I/O引脚数虽然增多,但引脚之间的距离远大于QFP封装方式,提高了成品率。

2.虽然BGA的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。

3.信号传输延迟小,适应频率大大提高。

4.组装可用共面焊接,可靠性大大提高。


BGA封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城(Citizen)公司开始着手研制塑封球栅面阵列封装的芯片(即BGA)。而后,摩托罗拉、康柏等公司也随即加入到开发BGA的行列。1993年,摩托罗拉率先将BGA应用于移动电话。同年,康柏公司也在工作站、PC电脑上加以应用。直到五六年前,Intel公司在电脑CPU中(即奔腾II、奔腾III、奔腾IV等),以及芯片组(如i850)中开始使用BGA,这对BGA应用领域扩展发挥了推波助澜的作用。BGA已成为极其热门的IC封装技术,其全球市场规模在2000年为12亿块,预计2005年市场需求将比2000年有70%以上幅度的增长。


QFP塑料方型扁平式封装和PFP塑料扁平组件式封装

QFP封装

QFP(Plastic Quad Flat Package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用SMD(表面安装设备技术)将芯片与主板焊接起来。采用SMD安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。

PFP(Plastic Flat Package)方式封装的芯片与QFP方式基本相同。唯一的区别是QFP一般为正方形,而PFP既可以是正方形,也可以是长方形。


QFP/PFP封装具有以下特点:

1.适用于SMD表面安装技术在PCB电路板上安装布线。

2.适合高频使用。

3.操作方便,可靠性高。

4.芯片面积与封装面积之间的比值较小。

Intel系列CPU中80286、80386和某些486主板采用这种封装形式。


PGA插针网格阵列封装

PGA(Pin Grid Array Package)芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。安装时,将芯片插入专门的PGA插座。为使CPU能够更方便地安装和拆卸,从486芯片开始,出现一种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安装和拆卸上的要求。

ZIF(Zero Insertion Force Socket)是指零插拔力的插座。把这种插座上的扳手轻轻抬起,CPU就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将CPU的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸CPU芯片只需将插座的扳手轻轻抬起,则压力解除,CPU芯片即可轻松取出。


PGA封装


PGA封装具有以下特点:

1.插拔操作更方便,可靠性高。

2.可适应更高的频率。

Intel系列CPU中,80486和Pentium、Pentium Pro均采用这种封装形式。


MCM多芯片模块

为解决单一芯片集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上用SMD技术组成多种多样的电子模块系统,从而出现MCM(Multi Chip Model)多芯片模块系统。

MCM具有以下特点:

1.封装延迟时间缩小,易于实现模块高速化。

2.缩小整机/模块的封装尺寸和重量。

3.系统可靠性大大提高。

总之,由于CPU和其他超大型集成电路在不断发展,集成电路的封装形式也不断作出相应的调整变化,而封装形式的进步又将反过来促进芯片技术向前发展。


CSP芯片尺寸封装

随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到CSP(Chip Size Package)。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的IC尺寸边长不大于芯片的1.2倍,IC面积只比晶粒(Die)大不超过1.4倍。


CSP封装又可分为四类:

1.Lead Frame Type(传统导线架形式),代表厂商有富士通、日立Rohm、高士达(Goldstar)等等。

2.Rigid Interposer Type(硬质内插板型),代表厂商有摩托罗拉索尼东芝松下等等。

3.Flexible Interposer Type(软质内插板型),其中最有名的是Tessera公司的microBGA,CTS的sim-BGA也采用相同的原理。其他代表厂商包括通用电气(GE)和NEC

4.Wafer Level Package(晶圆尺寸封装):有别于传统的单一芯片封装方式,WLCSP是将整片晶圆切割为一颗颗的单一芯片,它号称是封装技术的未来主流,已投入研发的厂商包括FCT、Aptos、卡西欧、EPIC、富士通、三菱电子等。


CSP封装具有以下特点:

1.满足了芯片I/O引脚不断增加的需要。

2.芯片面积与封装面积之间的比值很小。

3.极大地缩短延迟时间。

CSP封装适用于脚数少的IC,如内存条和便携电子产品。未来则将大量应用在信息家电(IA)、数字电视(DTV)、电子书(E-Book)、无线网络WLAN/GigabitEthemet、ADSL/手机芯片、蓝牙(Bluetooth)等新兴产品中。


微电子封装用电子胶粘剂按封装形式可分为半导体IC封装胶粘剂和PCB板级组装胶粘剂两大类。

半导体IC封装胶粘剂有环氧模塑料(EMC),LED包封胶水(LEDEncapsulant),芯片胶(DieAttachAdhesives),倒装芯片底部填充材料(FlipChipUnderfills),围堰与填充材料(DamandFillEncapsulant)。PCB板级组装胶粘剂有:贴片胶(SMTAdhesives),圆顶包封材料(COBEncapsu-lant),FPC补强胶水(FPCReinforcementAdhe-sives),板级底部填充材料(CSP/BGAUnderfills),摄像头模组组装用胶(ImageSensorAssemblyAd-hesives),敷型涂覆材料(conformalcoating),导热胶水(Thermallyconductiveadhesive)。


电子胶粘剂按固化方式可分为热固化,UV固化,厌氧固化,湿气固化,UV固化+热固化,UV固化+湿气固化等。按材料体系可分为环氧树脂类,丙烯酸酯类及其它。


电子制造上常用的胶粘剂有环氧树脂,UV(紫外)胶水,热熔胶,锡膏,厌氧胶,双组胶 等。环氧树脂一般通过高温固化,固化后粘接力大,广泛应用在功能器件的粘接,底部填充 Underfill等工艺上。

UV胶通过紫外光固化,其污染小固化快,在一些包封点胶,表面点胶等领域应用最广。

芯片封装中固晶胶其对胶水的粘接能力,导热率,热阻等都有要求。

热熔胶是结构PUR胶水,其有低温自然水汽固化等特点,固化快,无毒无污染,由于其独特优点正在逐渐代替其他类型胶水。


选择胶粘剂需考虑的因素

胶粘剂的重要特性包括流变特性(黏度、触变性、抗塌陷性及拖尾性、储存期/条件及有效寿 命)和机械特性(黏滞性、机械强度和耐热性、固化周期、电性稳定性等。


(1)选择胶粘剂时首先要保证符合环保要求,然后再综合考虑胶粘剂三方面的性能:固化前性能、固化性能及固化后性能。

(2)因双组份胶粘剂需要在适当时间混合到适当的比例,增加了工艺难度,因而应优先选用单组份系统。

(3)优选便于与绿油及电路板材料区分的有色胶粘剂,因为可以很快发现是否缺件、胶量多少、是否污染了焊盘/元件、空胶等,便于工艺控制;胶粘剂颜色通常有红色、白色和黄色。

(4)胶粘剂应有足够的黏滞性及湿度,以保证胶粘剂固化前元器件与电路板粘接牢固。两者通常随黏度而增加,高黏滞性材料可防止元器件在电路板贴装及传送过程中发生活动。

(5)对印刷工艺,胶粘剂涂覆后应有良好的抗塌陷性,以保证元器件与电路板良好接触,这对于较大支撑高度元器件如SOIC及芯片载体而言尤为重要。触变性好的胶粘剂,其黏度范围通常为60~500Pa·s,高触变率有助于保证良好的可印刷性及一致的模板印胶质量。

(6)对印刷工艺,胶粘剂应选择能够在较长时间暴露于空气中而对温湿度不敏感的胶粘剂,如某些新型胶粘剂的印刷寿命可达5天以上,且印刷工艺中将剩余的胶粘剂材料存入在容器中,可以再次使用。

(7)应优选那些可以在较短时间及较低温度达到适当连接强度的胶粘剂。较好的胶粘剂其固化时间及固化温度一般都在30~40s,120~130℃。焊接前后的强度应足以保证元器件粘结牢靠并有良好的耐热性,有足够的粘结力承受焊料波的剪切作用。温度应低于电路板基材及元器件可能发生损伤的温度,通常应低于基材的玻璃化转变温度,此温度以75~95℃为宜。连接强度太大会造成返修困难,而太小则起不到固定作用。

(8)应尽可能首次完全固化。固化期间不应有明显收缩,以减小元器件的应力。固化时不应有气体冒溢,以免气孔吸取助焊剂及其它污染物,降低电路板的可靠性。

(9)固化方式比较对于较宽大元器件,应选择UV-热固化方式,以保证涂胶的充分固化。典型的固化工艺是UV加IR辐射固化,某些胶粘剂用IR固化的时间可达到3min以下。同时,某些胶粘剂在低温加热时并不能很好地固化,因而也需要联合式固化工艺。

(10)胶粘剂在固化后便不再起作用,但应不影响后续工序如清洗、维修等的可靠性。

(11)固化后应具有良好的绝缘性、耐潮性和抗腐蚀性,尤其是在潮湿环境下的耐潮性,否则有可能发生电迁移而导致短路。


胶粘剂的涂覆工艺技术

微电子封装工业中包含许多的胶体涂覆技术,一般用来完成点的点胶,线的点胶,面(涂覆)的点胶。根据胶粘剂涂覆技术的特征常用的涂覆技术可分为大量式点胶(MassDispensing),接触式点胶(ContactDispensing),非接触式点胶(Non-ContactDispensing),每一类又有衍生出几种方式。


大量式点胶(MassDispensing)

大量式点胶又分为针转移和印刷法两大类。

针转移

针转移采用特制组合针头吸取胶液后可一次完成整块基板的布胶涂敷工作,是大批量生产时最简单的涂覆工艺。首先根据基板上需要点胶的位置定制专门的针阵列,需要涂覆胶粘剂时,将针阵列的针头上沾取适量的胶粘剂,转移到基板上,针头下移,胶粘剂涂到基板上,这样一块印刷电路板所需的胶滴一次全部滴涂完成。

针转移技术适用于大批量生产的场合,点胶速度快,操作容易。缺点是,针移法因工装夹具昂贵,换产缓慢;材料易受环境影响;点胶精度不高,涂覆一致性差,质量难以控制。不适合高精度及大胶点高度等,在实际生产中应用不多。

印刷法

印刷法利用专门制作的丝网或模版一次完成整块基板的布胶操作。印刷法一般可分为丝印法及模板印刷法,丝印法因涂覆质量等原因在实际生产中应用不多,主要是模板印刷法。主要应用在印制电路板大批量进行表面贴装(SMT),不需要经常修改的场合,所分配胶体一般为焊膏、浆料等高黏度材料。


近年来模板印刷逐渐成为一种可靠而廉价的涂胶工艺,而胶粘剂新材料/新特性的开发使印胶工艺更为可行,模板印刷法正逐渐成为高产量组装需要的首选工艺之一。印刷可以同时涂覆所有的胶滴,但基板表面必须平坦,一定不能有突起,因为突起将阻碍丝网同基板的接触。印刷工艺不能用于已经装有插装器件的混装板。模板印刷通过控制模板的厚度和开口尺寸也可获得理想的涂覆直径和高度。由于印刷工艺的缺点,分别是胶粘剂暴露于空气中、需要频繁清理丝网掩模或漏板及容易在PCB上形成污点,难以印出最理想的胶滴。


接触式点胶工艺(ContactDispensing)

接触式分配技术是通过针头在z向运动使粘附在针头端部的液滴与基板接触,依靠液体黏滞性和界面力作用实现液滴向基板的转移。接触式点胶根据其驱动源不同又可分为:气压驱动的时间压力型,电机驱动的螺杆泵式和电动微注射式两种。接触式分配技术可操作液体种类广泛,尤其适合分配膏状、浆料类等中高黏度的液体材料。


(1)时间-压力型接触式分配技术,该技术目前使用最广泛,它是随着SMT的发展最先引入的技术而且被业界广泛接受,使用历史较长。早期时间-压力型液体分配系统基于气压直接驱动原理工作,即压缩空气直接施加在注射筒内液体材料上部,并驱使液体从针头内流出。其主要的优点有:结构及原理简单,使用及维护成本较低;料桶和针头更换方便,通过更换零部件可滴出不同量的胶液;设备清洗和维修方便;系统灵活,可用点涂不同黏度的胶液。

基于气压直接驱动原理的液体分配过程是一个时变参数动态系统,随着分配过程的进行,注射筒内原材料将不断减小,气体体积不断增大,这导致在同样的动作时间和压力下,分配材料体积呈现减小趋势,增大了控制难度,难于点出一致性良好的微小胶点。此外,空气的可压缩性、控阀的响应特性等严重限制了分配精度和工作效率的提高。该种方法多用于分配高黏度材料,当流体黏度降低后,面临脉冲式气压直接击穿液体造成针头虚喷的问题。

为了避免气压直接驱动式的缺点,产品制造商开发了一系列气压活塞操控型液体分配阀,其原理是用恒压空气将液体材料挤压进分配阀内,用另一路脉冲气压控制活塞的往复振动,当活塞抬起时将打开流动通道,液体在压力作用下从针头内流出,当活塞落下时将切断液路,已挤出液体可在基板上形成点、线或图案。和气压直接驱动型相比,该种方法分配效率较高,液滴体积较小,可分配液体黏度范围较大。如EFD公司的隔膜阀式胶头点胶速度可达500点/min;滑阀式胶头在大压力驱动下,能够对粘合剂、银浆的高黏度胶体实现分配;针阀式胶头适用于中低黏度胶体,可点出0.18mm直径的微滴,在微电子制造等需要精密微量分配场合得到重要应用。

时间压力型点胶具有结构简单,操作方便,价格低廉,在普通点胶行业广为应用。目前国内自动化公司都推出自已公司的点胶控制器,而且价格低廉。时间压力型点胶机全球应用最广的是日本武藏时间压力型系列产品,MS-1(基础型用于廉价点胶),ML-5000XⅡ(MS-1基础上增加数显),ME-5000VT(ML-5000XⅡ基础上增加气压,流量反馈功能)。


(2)螺杆泵式点胶:又叫阿基米德螺栓法。螺杆泵式点胶分液技术,它是通过螺杆旋转带动胶液往针嘴处流动,并挤出完成点胶。螺杆泵式点胶在结构上利用伺服电机提供驱动压力,可以在保持一致性的情况下对黏度较高的胶液进行分液。该胶液分配技术是目前发展最快的技术之一,在市场上的份额不断增加,而且在很多应用上正替代时间压力式。

这种点胶方式的优点是:适应范围广,可以用来点涂不同黏度的胶液,该技术驱动力大,适于分配如焊膏、银浆等特高黏度的胶体类材料;胶点受螺杆旋转和针头直径的影响,因而可以通过调节这些参数,产生不同大小的胶点以适应不同的需要;螺杆泵不但可以用来产生一系列均匀的胶点,还可以画线和画出不同轮廓的图案。该技术不但可以用于滴涂贴片胶,也可以应用在诸如围坝、填充、底填料、粘结剂和焊膏涂布等具有高精密要求的大批量工业化生产当中。缺点是:螺杆泵式点胶分配过程对温度变化、胶内气泡敏感,较时间压力法需要更多的清洗,设备投资较大。

在点胶市场上主要有两种类型螺杆泵点胶阀,一种是含定子螺杆泵,另一种是无定子螺杆泵。含定子螺杆泵优点是可以对全黏度胶液进行点胶,点胶体积几乎只受螺杆转动角度控制,可以实现非常高精度点胶作业。由于设备加工精度高,含定子螺杆泵德国Viscotec公司生产的Preflow系列最好。无定子螺杆泵其结构简单,对中高黏度点胶精度控制高,特别适合焊膏点胶、银浆点胶和高黏度硅胶点胶。最常见的无定子螺杆泵厂家有美国诺信,日本武藏,美国泰康,韩国世宗和国内高凯精密机械等。


(3)活塞式点胶。活塞式点胶基于直线位移原理,是一种正向位移的点胶方式。采用类似活塞-气缸的机构来点胶,通过活塞挤压针管内胶体使其流出,特别适合中、高黏度的胶体。点胶量主要由活塞位移大小决定,对胶体黏度、温度、和压力不敏感,在高速时有很好的一致性,重复性高,特别适合小体积连续点胶。缺点是:设备需要经常清洗,而且清洗流程较复杂;每一点胶系统所滴胶点的尺寸固定,点较量大小不好调节,灵活性稍差;对针管容腔内气体敏感,对密封性要求很高;点胶频率难以提高;胶液中包含较大的微粉时不适用,只适用于滴点,不适合于画线或绘制轮廓图案。目前活塞式点胶阀应用最广的为日本武藏MPP-1型柱塞泵。在LED灯珠荧光粉点胶作业中以打点为主,对精度要求高,而且点胶过程中不能污染荧光粉,国内LED荧光粉点胶大多采用MPP-1柱塞泵或者与其相似的产品。


非接触式喷射滴胶

目前非接触式喷射滴胶按其驱动方式不同可分为:气动驱动式喷射点胶和压电驱动式喷射点胶。喷射点胶技术,通过动量使胶水高速喷射至基板上并形成微点,由于不再需要针头点胶中用于克服胶水附着实现点胶的z轴运动,喷射技术大幅度提高了点胶速度。当从一个点胶位置转移到另一个位置的时候,喷射是在飞行中完成,可以在非常紧凑的区域和非粘胶区域很小的地方等苛刻工况下完成的点胶操作。由于喷射式点胶技术具有分配速度快,一致性好,液滴微小的特点。目前在小批量高精度的半导体装配上得到了应用。例如:非接触式点胶在电子行业如linebar灯条上应用非常广泛。Linebar行业的用胶点在PC透镜与PCB的粘接,快速定位点胶,单个点点胶速度可以在5ms完成。


由于高频电磁阀结构原理的限制,气动驱动式喷射阀最大工作频率为333Hz。国际上推出气动喷射点胶阀的公司及相应型号有武藏的Aero-Jet、美国诺信Asymtek的DJ9500、美国泰康公司的9000、深圳轴心自控有限公司的Jet-6000、Jet-7000等。随后上海力桥自动化有限公司,常州高凯精密机械有限公司等陆续推出相应产品。压电驱动式喷射点胶具有响应速度快、输出位移精度高等特点,点胶一致性在±2%,最高频率可达40kHz,主要应用于油墨喷印、UV胶喷印、银浆喷印中。


不同胶黏剂涂覆工艺的比较

目前,各种胶粘剂涂覆工艺技术在适用黏度范围、分配速度、微滴体积等方面均各有优势,在不同场合得到应用。对比不同分配技术,可得出如下结论:


(1)分配胶粘剂黏度适应情况不同。液体驱动方法的差异,导致各种分配技术适用黏度范围不同。如螺杆泵式分配技术驱动力大,适合分配焊膏、含微粒浆料等特高黏度的胶体类材料;而非接触式分配技术分配高黏度液体的能力较差,仅适合分配低中等黏度类液体材料。

(2)可分配液滴体积不同。接触式分配技术一般获取的液滴体积较大,实际应用中,多用于大剂量液体材料需求场合。非接触式分配技术可获取更微小的液滴。另外,现有技术在分配更高黏度液体时,可分配的最小微滴体积往往呈现增大趋势。

(3)分配速度情况不同。非接触式分配技术不需要喷嘴在z向移动,省略了液体与基板接触后的停滞时间,因此具有更高的分配效率。一般,低黏度液体材料更容易实现高速分配,随着液体黏度的增大,需要的驱动力、单滴分配时间都将增大,从而影响了分配速度的提高。

(4)工作可靠性不同。基于接触式分配技术的液体分配过程更容易受到如针头位置、基板表面质量、物理空间障碍等外界因素的影响,其工作可靠性低于非接触式分配技术。另外,非接触式分配技术和系统对物理空间环境要求低,更适合在紧密空间、高密度分配场合应用。但非接触式喷射系统复杂,控制麻烦,维护费用及设备成本高。

可见,不同液体分配技术在工作特性方面差异很大,微量液体配场合众多,要求不一,使用液体材料类型广泛。因此,充分考虑具体应用环境,结合流体类型及经济条件等因素,选择合适的微量液体分配方法显得至关重要。


如今胶粘接技术为了适应更加苛刻的工作环境,满足更加精密的技术要求,提出了新的发展方向。胶滴的微小化、系统的自动化,点胶阀的非接触化以及胶粘剂黏度兼容化成了精密点胶技术新的研究方向。


(1)胶滴微小化。随着微电子技术的发展,微装配面对的零件也变得越来越小,就要求点胶系统得到的胶滴要向微小化方向发展。

(2)点胶系统自动化。我国许多行业中自动化程度并不高,在微小装配中绝大多数是利用工人的技术和工作经验来完成粘接的,因此,点胶量的波动很大,一致性难以保证,提高点胶系统的自动化程度有重要意义的。

(3)点胶阀非接触化。传统的点胶系统一般采用的是时间/压力式、螺杆泵式以及活塞式点胶阀。接触式的点胶阀除有一致性难以保证、难以维护等缺点之外,还很难实现狭小空间中的点胶操作,喷射点胶技术不但克服了空间的局限性而且消除了z轴方向上的移动,并具有点胶速度快、生产效率高、一致性好、响应速度快等优点,因此点胶分液技术正在经历一场由接触式向非接触式的转变。

(4)胶粘剂黏度的兼容化。胶粘剂的黏度是影响点胶质量的一项重要因素,黏度过低时,在喷射点胶过程中很容易发生飞溅;黏度太高,表面张力过大,又很难形成较小的胶滴,也容易发生拉丝、堵塞喷头、喷头边缘黏滞等问题。一种点胶系统如果能够适用于多种黏度胶粘剂,不仅可以降低设备成本,而且可以缩短生产周期。


来源:互联网综合



中国胶粘剂网非常重视版权,信息仅供参考、交流,如有侵权,请联系我们将在第一时间删除。

中 国 胶 粘 剂 网

聚焦胶粘动态

服务胶粘行业

中国胶粘剂网
胶粘剂行情、资讯、技术、供应、求购、人才、产品等等,无一不有,尽享您的胶粘财富服务。
 最新文章