SPT | 文献前沿 | 光催化辅助太阳能驱动界面水蒸发:原理、进展和趋势

文摘   2024-12-14 08:00   上海  
【研究背景】
人口增长和气候变化导致的水污染的复杂性和严重性是一个重大的全球性挑战。为了解决这一全球水危机,提升淡水资源的产量成为各实践领域的迫切任务。我们迫切需要找到一种更绿色、更可持续、更高效的淡水获取方式,这既是当前环境管理的需要,也是未来可持续发展的必然趋势。太阳能驱动界面水蒸发是一种绿色、环保、低碳的产水技术,只使用太阳能进行淡水生产,为我们提供了理想的解决方案。而光催化可以在常温常压下进行,避免了其他技术的高温高压等复杂条件,能够高效去除水中有害物质,产生一些可再生能源。将太阳能驱动界面水蒸发技术与光催化相结合,提供了一种绿色、可持续、高效的生产清洁水的方法。现今,很少有研究深入地探讨了太阳能驱动的界面水蒸发技术和光催化结合的相关内容。
为此,哈尔滨师范大学郭伟团队就太阳能驱动的界面水蒸发及光催化技术综述了近年来光催化辅助太阳能驱动的界面水蒸发的研究进展,重点介绍了光催化和光热机理及其协同效应。详细讨论了各种光催化剂,包括金属氧化物、金属硫化物或其他金属基光催化剂、金属有机骨架、共价有机骨架、石墨碳氮和过渡金属碳化物和氮化物,强调了它们的结构特点、工作原理和集成到蒸发器中的性能优势。此外,还探讨了其在废水处理和绿色能源开发等领域的实际应用,突出了它们在环境保护和能源发展方面的潜力。具体来说,我们考察了Janus结构、气凝胶、水凝胶和泡沫结构的光催化蒸发器,并讨论了它们独特的优势和挑战。光催化辅助太阳能驱动的界面水蒸发技术的不断研究和进步将在环境保护和能源发展中显示出巨大的潜力。
相关内容以“Photocatalysis assisted solar-driven interfacial water evaporation: principles, advances and trends”为题在著名期刊《Separation and Purification Technology》(中科院一区,IF=8.1)上发表。文章的通讯作者为哈尔滨师范大学郭伟副教授,第一作者为哈尔滨师范大学硕士研究生王冬雪。
【图文速览】

TOC graphic

Fig.1.Schematic diagram of the Photocatalysis-assisted solar-driven interfacial water evaporation

Fig. 2.Photothermal conversion mechanisms. (a-c) non-radiative relaxation mechanism for semiconductors; Reproduced with permission from [10] [11] [12] Copyright 2020 Free Access, 2024 Elsevier, 2024 Elsevier (d-f) Thermal vibration of molecules for carbon-based; Reproduced with permission from [15] [11] [12] Copyright 2024 ACS, 2024 Elsevier, 2024 Elsevier (g-i) Localized surface plasmon resonance; Reproduced with permission from [18] [11] [19] Copyright 2024 Elsevier, 2024 Elsevier, 2024 Elsevier.

Fig. 3.(a-c) Photocatalysis mechanism; (a) Photocatalytic degradation of organic dyes; Reproduced with permission from [24] Copyright 2024 Elsevier; (b) Photocatalytic degradation of heavy metal irons; Reproduced with permission from [25] Copyright 2024 Elsevier; (c) Photocatalytic disinfection mechanism; Reproduced with permission from [26] Copyright 2023 Elsevier (d-g) Photothermal-photocatalytic synergistic mechanism; (d) The synergistic action of photothermal and catalytic degradation for simultaneous water evaporation and phenol degradation; Reproduced with permission from [35] Copyright 2024 Elsevier (e) Photocatalytic-photothermal synergistic water remediation; Reproduced with permission from [36] Copyright 2024 Elsevier (f) Mechanism diagram of photothermal-assisted photocatalysis over Co3O4@ZnIn2S4S-scheme heterojunction; Reproduced with permission from [37]Copyright 2023 Elsevier (g) Mechanism diagram of photothermal-assisted photocatalysis over Co3O4/CNNVs S-scheme heterojunction nanoreactor; Reproduced with permission from [38] Copyright 2023 Elsevier.

Fig. 4.Schematic classification and application of evaporators using various photocatalysts.

Fig. 5.(a) SEM image of Au@TiO2 core-shell NPs. (b) Photo of the core-shell Au@TiO2 NPs thin film. Reproduced with permission from [43] Copyright 2017 Elsevier. (c) The synthesis process of WO3/ZnIn2S4. Reproduced with permission from [45] Copyright 2024 Elsevier. (d) SEM of MoSe2nanoparticles. Reproduced with permission from [49] Copyright 2024 Elsevier. (e) SEM image of Co-MOF nanorod. (f) Photographs of (a1) the large-sized flexible Co-MOF/CNT membrane, and (a2) the folder or (a3) curled membrane, (a4) Photography of a crane weaved by Co-MOF/CNT membrane. Reproduced with permission from [56] Copyright 2022 Elsevier. (g) Synthesis of DBD-BTTH and DBD-BTT. (h) Schematic representation of preparation procedures of BHMS. Reproduced with permission from [61] Copyright 2021 ACS. (i) Digital photograph of rGCPP, SEM images of the PU sponge. (j) Schematic diagram of the preparation process of rGCPP. Reproduced with permission from [70] Copyright 2023 Elsevier. (k) Stripping and etching process of MXene nanosheets. (l) SEM image of stratified Ti3C2Tx (MXene). Reproduced with permission from [78] Copyright 2023 Elsevier.

Fig. 6(a) Schematic of the structure and corresponding SSG mechanism of Janus hydrogel (JH). (The THL means the top layer and the BHL is the bottom layer). (b) The photograph of JH. (c) The evaporation rate and energy efficiency of hydrogels. (d) Comparison of solution colors before and after purification in trypan blue and Congo red and degradation rates. (e) Schematic diagram of synergistic photocatalytic degradation mechanism of PDA and TiO2. Reproduced with permission from [87] Copyright 2023 Elsevier. (f) Photograph for the self-floating NC@CNF/PP Janus membrane. (g) Schematic illustration showing the photodegradation mechanism of MO using a self-floating NC@CNF/PP Janus membrane. (h) TOC removal efficiency of the developed self-floating NC@CNF/PP Janus membrane during photodegradation of MO. Reproduced with permission from [88] Copyright 2023 Elsevier

Fig. 7.(a) The synthesis process of c-GPP aerogel. (b) Light harvesting efficiency of rGO, GP, c-GPP, i-GPP, respectively. (c) Light-to-heat conversion efficiency of c-GPP in different aqueous environments under one sun. (d) Removal efficiency of c-GPP for organic pollutants by photocatalysis and photothermal evaporation. Reproduced with permission from [97] Copyright 2024 Elsevier. (e) Pore size distribution for GR/PPy aerogels obtained via the non-localized density functional theory (NLDFT) model. (f) Water evaporation amount of different evaporators under 1.0 sun irradiation. (g) UV–vis curves at different reaction time of RhB. Reproduced with permission from [98] Copyright 2022 Elsevier

Fig. 8.(a) The diagram for simultaneous solar photothermal evaporation and photocatalysis based on the hydrogel solar evaporator. (b) Mass change of water in 60 min. (c) The photocatalytic degradation of MB by Gel-CM-20 hydrogel (residue MB solution before and after the photocatalysis, inset in c). Reproduced with permission from [102] Copyright 2024 Elsevier. (d) Schematic illustration of the swelling process of MAP hydrogel membrane. (e) Projected view and side view of the charge-density difference map of porphyrin@MXene system. Yellow and blue regions denote the isosurfaces of electron accumulation and depletion. Reproduced with permission from [103] Copyright 2022 Elsevier. (f) The selective permeable evaporation process via the Hy-P-CW. (g) Corresponding hydrogen 36evolution rates of P-W, Hy-P-W, P-CW, and Hy-P-CW. (h) Scheme of the energy band structures and charge carrier transport pathway in the CdS/MoSe2heterojunction. Reproduced with permission from [104] Copyright 2023 Elsevier

Fig. 9.(a) Preparation flow chart of the 3D Cu foam with the core-shell CuO/ PDA@TA-Fe3+nanowires arrays. (b) Water evaporation rate and evaporation efficiency of different systems under simulated sunlight. (c) Cycling performance of 3-CPTF under solar illumination of 1.0 sun. (d) Schematic illustration of 3-CPTF with the self-desalting performance. Reproduced with permission 39 from [108] Copyright 2024 Elsevier. (e) Illustration of the fabrication process of TNA@Ti, Black TNA@Ti and CDs/Black TNA@Ti. (f) Photocatalytic performance of photofading, TNA@Ti, Black TNA-300@Ti and CDs-20/Black TNA-300@Ti for degradation of rhodamine B. (g) Fluorescence spectral changes of terephthalic acid solution observed during illumination of TNA@Ti, Black TNA- 300@Ti and CDs-20/Black TNA-300@Ti. (h) TEM image of CDs-20/Black TNA-300@Ti after 20 times cycling experiment. Reproduced with permission from [109] Copyright 2019 Elsevier

Fig. 10.(a)Schematic illustration of 3D porous structure of natural pinecone consisting of rachis and scales, and the preparation of HPM device for solar-thermal evaporation of water and photocatalytic degradation of pollutants. (b) Schematic illustrating the solar-thermal and photocatalytic mechanisms of the HPM under solar light irradiation. Absorption spectra of (c) methyl orange solution and (d) methylene blue solution before and after the solar steam generation treatment with the HPM device under 1-sun irradiation. The insets are digital pictures of the solutions before and after the purification. Reproduced with permission from [111] Copyright 2023 Elsevier (e) Evaporation performance of hydrogels for various pollutants (f) First-line principle simulation of the binding of water molecules and phenol in hydrogels, respectively (g) First-line principle simulation of banding energies of water molecules and phenol for different hydrogels Reproduced with permission from [112] Copyright 2024 Elsevier.

Fig. 11.(a) Degradation rate of Cr (Ⅵ) from [25] Copyright 2024 Elsevier (b) The corresponding degradation efficiency and reaction kinetic constant by different evaporators. Reproduced with permission from [114] Copyright 2024 Elsevier (c) Scheme of synergistic photocatalytic-photothermal effect on MXene membrane for the recovery of Ag+ ions and removal of RhB. Reproduced with permission from [115] Copyright 2023 Elsevier (d) Evaporation rates and conversion efficiency of PVA, PCH-1, and PCH-5 (e) Representative colonies of Gram-positiveS. aureusbefore and after treatment with solar illumination. (f) Inhibition rates of PVA and PCH-1 for Gram-positiveS. aureus. Reproduced with permission from [118] Copyright 2022 ACS (g) mass change of water for simulated seawater, GM, GMW-1, GMW-2, GMW-3, GMW-4, and GMW-5 over time under one sun illumination (1 kW m−2). (h) Possible antibacterial mechanisms under one sun exposure (i) Bacterial growth ofE. coliin the stock solution before evaporation, distilled water without/with the GMW-3 composite after evaporation for 24 h. Reproduced with permission from [119] Copyright 2023 ACS

Fig. 12.(a) Photographs showing the top and side views of a SVG-PC sheet held by tweezers (photoactive area of 1 × 1 cm2). (b) Optimization of PC loading for H2 evolution (The units mmol gcat−1h−1represent mmol per gram catalyst per hour.) Data in red corresponds to both H2and STH. (c) Solar vapour generation rate and solar thermal conversion efficiency for the SVG substrate and SVG-PC sheets. Photocatalytic and solar vapour generation measurements were performed using pure water under AM1.5G illumination for 22 and 4 h, respectively. (d) Long-term H2evolution from pure water (top) and seawater (bottom) using Glass-PC, untreated SVG-PC and SVG-PC sheets. Photocatalytic measurements were performed under AM1.5G irradiation for 22 h each cycle. The reactor was purged with N2/CH4for 15 min before each cycle. Reproduced with permission from [34] Copyright Free Access (e) Schematic illustration of hierarchical Ti3C2/BiVO4microcapsules for enhanced solar-driven water evaporation and photocatalytic H2 evolution activity. (f) Hydrogen evolution by the Ti3C2(0 µmol), BiVO4 (1.50 ± 0.08 µmol), and Ti3C2/ BiVO4 (9.37 ± 0.11 µmol) microcapsules in triethanolamine solution under full-spectrum irradiation. (g) Time dependent IR images of the four developed systems (NRL, NRL-BiVO4, NRL- Ti3C2, and NRL- Ti3C2/BiVO4) under 1-sun illumination. (h) Analysis using inductively coupled plasma optical emission spectrometry (ICP-OES) was conducted on a concentration gradient of primary salt ions present in simulated seawater (20 wt%) and condensed water. Reproduced with permission from [122] Copyright 2024 Elsevier

Fig. 13.(a) Electronic band structure of three COFs. (b) Photosynthesis of H2O2on three COFs under different reaction conditions. (c) Mechanism for photocatalytic H2O2 production of Bpy-TAPT. Reproduced with permission from [125] Copyright 2023 Elsevier (d) Schematic diagram of the synthesis process of Co-CN@G (e) Time-dependent H2O2photosynthetic performance of Co-CN@G (f) Photosynthetic properties of H2O2after 10 h in a simulated seawater system in the absence of (W/O) different metal cations (g) ·O2-, ·OH EPR signals of Co-CN@G in the presence of DMPO at different 51light intensities (h) Mechanism of H2O2synthesis by photothermal-photocatalytic system. Reproduced with permission from [126] Copyright 2023 Elsevier.

Fig. 14.(a) Percent ammonia conversion XNH3 and selectivity SY (Y = NO2, NO3and N2) toward ammonia photocatalytic oxidation products after 6 h irradiation in the presence of 0.1 g L−1 of different TiO2 photocatalysts, with air bubbling at 150 mL min−1. In all runs, [N]i100 ppm, pH 10.5 (b) Examples of ammonia, nitrite and nitrate ion concentrations. Irradiation time; 0.1 g L−1 P25, TiO2, [N]i100 ppm, pH 10.5, air bubbling at 150 mL min−1. Reproduced with permission from [129] Copyright 2012 Elsevier (c) SEM of perlite nanosheets (d) Effect of light intensity on ammonia degradation by TiO2/perlite Reproduced with permission from [130] Copyright 2014 Elsevier (e) NH3 conversion and N2 selectivity over α-MnO2, g-C3N4, Ag3PO4, P25, TiO2-001 with irradiation of simulated solar-light (f) NH3conversion and N2 selectivity over cryptomelane with wavelength (g) Mechanisms of photothermal catalytic and thermalcatalytic oxidation processes of NH3 over cryptomelane Reproduced with permission from [131] Copyright 2023 Elsevier

【文章总结】
本文从可用的水资源在逐渐减少,全球性水危机日益加剧等实际问题出发,提出了光催化辅助界面水蒸发技术。通过光催化过程,既能有效净化水质,又能实现高效的水分蒸发,最终产生H2等清洁能源。这一过程既环保又高效,高度符合全球节能减排战略,对推动绿色能源发展具有关键作用。随着技术的快速发展和材料科学、化学工程、热力学等学科的交叉创新,为光催化辅助界面水蒸发技术提供了广阔的研究机会。新型材料的发现,包括新型二维材料和纳米异质结构材料,由于其独特的光吸收特性和优异的催化性能,大大提高了太阳能转换效率。同时,通过优化光催化剂的设计,提高光热转换性能,可以进一步提高水的蒸发速率和太阳能利用效率,为水的回用和可持续能源生产提供新的途径。光催化界面水蒸发技术的潜力和前景为解决水资源危机和促进绿色能源的发展开辟了新的途径。该领域的研究对全球环境保护和能源安全具有深远的现实意义。未来,我们希望通过多学科协同创新,克服现有的技术挑战,让太阳能驱动的光催化辅助界面水蒸发技术在解决全球水资源危机中发挥更大的作用。尽管如此,这项技术也面临着许多机遇和挑战:
(1)有限的光吸收能力:高效稳定的光催化剂选择仍然很少。许多光催化剂主要吸收紫外线,这只占太阳光谱的一小部分,导致可见光利用率低。这限制了太阳能的充分利用。开发具有广谱光吸收、高催化效率和优异稳定性的新型光催化材料仍然是一个关键的挑战。
(2)系统设计和优化的复杂性:光催化辅助界面水蒸发系统的设计本身就很复杂,因为它需要多个组件的无缝集成,以最大限度地提高光热和光催化效果。这包括仔细选择和优化太阳能吸收器、蒸发结构和隔热体,以及了解它们的协同作用。先进的设计方法,如分层多孔结构或Janus膜,可以增强光吸收、热定位和水传输效率。此外,在分子水平上更深入地了解光催化机制,包括反应中间体的形成和转化,对于优化反应途径至关重要。
(3)实际应用中的环境适应性:在现实场景中,环境适应性对于太阳能驱动界面水蒸发系统的有效部署至关重要。开发强大的光催化系统,能够承受不同的环境条件,同时保持高性能是一个迫切的研究需求。
(4)长期稳定性问题:系统的耐久性是连续运行的关键考虑因素,因为长时间使用会导致磨损、光腐蚀和催化活性降低。研究光催化剂的降解机理,制定抗老化策略是提高材料弹性的必要条件。例如,表面钝化、保护涂层或使用更稳定的半导体材料可以显著延长系统的使用寿命。
(5)成本和应用规模:尽管实验室研究已经证明了有希望的结果,但与扩大太阳能驱动界面水蒸发技术相关的高生产成本和挑战仍然是重大障碍。降低成本的策略,例如使用地球资源丰富的低成本原材料和简化制造过程,对于将实验室的创新转化为商业产品至关重要。此外,为了验证该技术在实际环境中的性能并促进大规模生产,还需要进行中试示范和与行业合作伙伴的合作。
(6)探索更广泛的应用:除了海水淡化和净化,光催化辅助太阳能驱动的界面水蒸发技术还具有多种其他应用前景。例如,它可以集成到制氢系统、药品和杀虫剂的废水处理系统中,甚至可以集成到自清洁表面中。
【研究团队】
郭伟副教授
通讯作者郭伟,博士、副教授,硕士生导师,毕业于哈尔滨工业大学,主要从事无机纳米材料的可控制备及光热抗肿瘤应用研究,对于纳米材料的合成与组装、形貌与尺寸的调控、光热转换性能改进、细胞培养与小鼠模型的构建等方面积累了丰富的研究经验。近年来,主持国家自然科学基金一项、黑龙江省优秀青年基金与黑龙江省青年创新人才培养计划两项,以第一作者和通讯作者在Adv. Mater.、Chem. Mater.、Chem. Eng. J.、Adv. Healthcare Mater.、Bioresour. Technol.、J. Colloid Interface Sci.、ACS Appl. Mater. Interfaces及Desalination等高水平期刊上发表论文40余篇。出版1部教材。更多介绍:https://www.x-mol.com/groups/weiguo.
第一作者王冬雪,哈尔滨师范大学(哈尔滨)化学化工学院在读硕士研究生。研究方向为太阳能驱动界面水蒸发,海水淡化及污染物去除等。
【文献来源】
https://doi.org/10.1016/j.seppur.2024.130975

光热界面蒸发
该学术平台旨在介绍光热界面水蒸发相关学术前沿,致力于推动光热界面蒸发产业化发展,为生化环材等相关研究方向的学者提供学术交流平台,加强学术交流,增进相关合作。欢迎广大学者和课题组推荐最新研究成果进行宣传!
 最新文章