01
02
2.1 简单的二叉树
首页简单简介一下树形数据结构,树形数据结构是一种层级化的数据组织方式,广泛用于表示具有层次关系的数据。由于其层级化组织特点,树形数据结构能够高效支持多种查找、插入和删除操作,因此在计算机科学和实际应用中得到了广泛应用。下面是一个简单的二叉树示例:
▲二叉树及遍历算法
2.2 树的应用场景
部门通讯录:通讯录中可以通过树形结构展示不同部门及其上下级关系,便于用户快速找到联系人
系统菜单:系统中的菜单通常是分层的,通过树形结构可以方便地展示和管理各级菜单项
地址选择器:地理地址通常有多级关系,如省、市、县,通过树形结构可以方便用户选择具体的地址
文件夹目录:文件系统中的文件夹和文件可以通过树形结构来组织和展示,便于用户进行文件操作
产品多级分类: 通过树形结构可以直观地展示和管理各级分类
评论回复: 通过树形结构可以展示帖子的回复关系,便于查看讨论的脉络
树形数据结构的应用场景通常是分层的,通过树形结构可以展示和管理各级流程节点及其关系。这些场景中,树形结构的应用可以显著提升数据的组织和展示效率,帮助用户更直观地理解和操作系统。
03
3.1 JAVA中树形对象的定义
@Data
public class MenuVo {
private Long id;
private Long pId;
private String name;
private Integer rank=0;
private List<MenuVo> subMenus=new ArrayList<>();
}
3.2 JSON数据格式中的树形结构
[
{
"id": 0,
"subMenus": [
{
"id": 2,
"subMenus": [
{
"id": 5,
"pid": 2
}
],
"pid": 0
}
],
"pid": -1
}
]
3.3 树形数据结构的储存
04
4.1 makeTree()构建树
直接看这神一样的方法makeTree():
public class TreeUtil {
public static <E> List<E> makeTree(List<E> list, Predicate<E> rootCheck, BiFunction<E, E, Boolean> parentCheck, BiConsumer<E, List<E>> setSubChildren) {
return list.stream().filter(rootCheck).peek(x -> setSubChildren.accept(x, makeChildren(x, list, parentCheck, setSubChildren))).collect(Collectors.toList());
}
private static <E> List<E> makeChildren(E parent, List<E> allData, BiFunction<E, E, Boolean> parentCheck, BiConsumer<E, List<E>> setSubChildren) {
return allData.stream().filter(x -> parentCheck.apply(parent, x)).peek(x -> setSubChildren.accept(x, makeChildren(x, allData, parentCheck, setSubChildren))).collect(Collectors.toList());
}
}
是不是完全看不懂?像看天书一样?makeTree方法为了通用使用了泛型+函数式编程+递归,正常人一眼根本看不这是在干什么的,我们先不用管这个makeTree合成树的代码原理,先直接看如何使用:
MenuVo menu0 = new MenuVo(0L, -1L);
MenuVo menu1 = new MenuVo(1L, 0L);
MenuVo menu2 = new MenuVo(2L, 0L);
MenuVo menu3 = new MenuVo(3L, 1L);
MenuVo menu4 = new MenuVo(4L, 1L);
MenuVo menu5 = new MenuVo(5L, 2L);
MenuVo menu6 = new MenuVo(6L, 2L);
MenuVo menu7 = new MenuVo(7L, 3L);
MenuVo menu8 = new MenuVo(8L, 3L);
MenuVo menu9 = new MenuVo(9L, 4L);
//基本数据
List<MenuVo> menuList = Arrays.asList(menu0,menu1, menu2,menu3,menu4,menu5,menu6,menu7,menu8,menu9);
//合成树
List<MenuVo> tree= TreeUtil.makeTree(menuList, x->x.getPId()==-1L,(x, y)->x.getId().equals(y.getPId()), MenuVo::setSubMenus);
System.out.println(JsonUtils.toJson(tree));
我们结合这个简单的合成菜单树看一下这个makeTree()方法参数是如何使用的:
第1个参数List list,为我们需要合成树的List,
如上面Demo中的menuList
第2个参数Predicate rootCheck,判断为根节点的条件,
如上面Demo中pId==-1就是根节点
第3个参数parentCheck 判断为父节点条件,
如上面Demo中 id==pId
第4个参数setSubChildren,设置下级数据方法
如上面Demo中:Menu::setSubMenus
有了上面这4个参数,只要是合成树场景,这个TreeUtil.makeTree()都可以适用,比如我们要合成一个部门树:
@Data
public class GroupVO {
private String groupId;
private String parentGroupId;
private String groupName;
private List<GroupVO> subGroups=new ArrayList<>();
}
groupId是部门ID, 根部门的条件是parentGroupId=null, 那么调用合成树的方法为:
List<GroupVO> groupTree=TreeUtil.makeTree(groupList, x->x.getParentGroupId==null,(x, y)->x.getGroupId().equals(y.getParentGroupId), GroupVO::setSubGroups);
是不是很优雅?很通用?完全不需要实现什么接口、定义什么TreeNode、增加什么TreeConfig,静态方法直接调用就搞定。一个字:绝!
05
5.1 去掉泛型和函数接口
第一步我们可以把泛型和函数接口去掉,再看一下一个如何使用递归合成树:
public static List<MenuVo> makeTree(List<MenuVo> allDate,Long rootParentId) {
List<MenuVo> roots = new ArrayList<>();
// 1、获取所有根节点
for (MenuVo menu : allDate) {
if (Objects.equals(rootParentId, menu.getPId())) {
roots.add(menu);
}
}
// 2、所有根节点设置子节点
for (MenuVo root : roots) {
makeChildren(root, allDate);
}
return roots;
}
public static MenuVo makeChildren(MenuVo root, List<MenuVo> allDate) {
//遍历所有数据,获取当前节点的子节点
for (MenuVo menu : allDate) {
if (Objects.equals(root.getId(), menu.getPId())) {
makeChildren(menu, allDate);
//将是当前节点的子节点添加到当前节点的subMenus中
root.getSubMenus().add(menu);
}
}
return root;
}
调用方法:
List<MenuVo> tree2 = parseTree(menuList,-1L);
通过上面的两个方法可以合成树的基本逻辑,主要分为三步:
找到所有根节点
遍历所有根节点设置子节点
遍历allDate查询子节点
5.2 使用函数优化
看懂上面的代码后,我们再给加上函数式接口:
public static List<MenuVo> makeTree(List<MenuVo> allDate, Predicate<MenuVo> rootCheck, BiFunction<MenuVo, MenuVo, Boolean> parentCheck, BiConsumer<MenuVo, List<MenuVo>> setSubChildren) {
// 1、获取所有根节点
List<MenuVo> roots = allDate.stream().filter(x->rootCheck.test(x)).collect(Collectors.toList());;
// 2、所有根节点设置子节点
roots.stream().forEach(x->makeChildren(x,allDate,parentCheck,setSubChildren));
return roots;
}
public static MenuVo makeChildren(MenuVo root, List<MenuVo> allDate,BiFunction<MenuVo, MenuVo, Boolean> parentCheck, BiConsumer<MenuVo, List<MenuVo>> setSubChildren) {
//遍历所有数据,获取当前节点的子节点
allDate.stream().filter(x->parentCheck.apply(root,x)).forEach(x->{
makeChildren(x, allDate,parentCheck,setSubChildren);
//将是当前节点的子节点添加到当前节点的subMenus中
setSubChildren.accept(x,allDate);
});
return root;
}
06
6.1 遍历Tree
public static <E> void forPreOrder(List<E> tree, Consumer<E> consumer, Function<E, List<E>> getSubChildren) {
for (E l : tree) {
consumer.accept(l);
List<E> es = getSubChildren.apply(l);
if (es != null && es.size() > 0) {
forPreOrder(es, consumer, getSubChildren);
}
}
}
public static <E> void forLevelOrder(List<E> tree, Consumer<E> consumer, Function<E, List<E>> getSubChildren) {
Queue<E> queue = new LinkedList<>(tree);
while (!queue.isEmpty()) {
E item = queue.poll();
consumer.accept(item);
List<E> childList = getSubChildren.apply(item);
if (childList != null && !childList.isEmpty()) {
queue.addAll(childList);
}
}
}
public static <E> void forPostOrder(List<E> tree, Consumer<E> consumer, Function<E, List<E>> getSubChildren) {
for (E item : tree) {
List<E> childList = getSubChildren.apply(item);
if (childList != null && !childList.isEmpty()) {
forPostOrder(childList, consumer, getSubChildren);
}
consumer.accept(item);
}
}
//先序
StringBuffer preStr=new StringBuffer();
TreeUtil.forPreOrder(tree,x-> preStr.append(x.getId().toString()),Menu::getSubMenus);
Assert.assertEquals("0137849256",preStr.toString());
//层序
StringBuffer levelStr=new StringBuffer();
TreeUtil.forLevelOrder(tree,x-> levelStr.append(x.getId().toString()),Menu::getSubMenus);
Assert.assertEquals("0123456789",levelStr.toString());
//后序
StringBuffer postOrder=new StringBuffer();
TreeUtil.forPostOrder(tree,x-> postOrder.append(x.getId().toString()),Menu::getSubMenus);
Assert.assertEquals("7839415620",postOrder.toString());
通过这个Demo我们解释一下遍历中的几个参数:
tree 需要遍历的树,就是makeTree()合成的对象
Consumer consumer 遍历后对单个元素的处理方法,
如:x-> System.out.println(x)、 postOrder.append(x.getId().toString())
Function<E, List> getSubChildren,获取下级数据方法,
如Menu::getSubMenus
有了这三个方法遍历Tree是不是和遍历List一样简单方便了?二个字:绝了!!
6.2 flat打平树
我们可以将一个List使用markTree()构建成树,就可以使用flat()将树还原成List
public static <E> List<E> flat(List<E> tree, Function<E, List<E>> getSubChildren, Consumer<E> setSubChildren) {
List<E> res = new ArrayList<>();
forPostOrder(tree, item -> {
setSubChildren.accept(item);
res.add(item);
}, getSubChildren);
return res;
}
使用方法:
List<Menu> flat = TreeUtil.flat(tree, Menu::getSubMenus,x->x.setSubMenus(null));
Assert.assertEquals(flat.size(),menuList.size());
flat.forEach(x->{
Assert.assertTrue(x.getSubMenus()==null);
});
flat()参数解释:
tree 需要打平的树,就是makeTree()合成的对象
Function<E, List> getSubChildren,获取下级数据方法,
如Menu::getSubMenus
Consumer setSubChildren,设置下级数据方法,
如:x->x.setSubMenus(null)
6.3 sort()排查
我们知道针对List,可以使用list.sort()直接排序,那么针对树,就可以调用sort()方法直接对树中所有子节点直接排序:
public static <E> List<E> sort(List<E> tree, Comparator<? super E> comparator, Function<E, List<E>> getChildren) {
for (E item : tree) {
List<E> childList = getChildren.apply(item);
if (childList != null && !childList.isEmpty()) {
sort(childList,comparator,getChildren);
}
}
tree.sort(comparator);
return tree;
}
比如MenuVo有一个rank值,表明排序权重
MenuVo menu0 = new MenuVo(0L, -1L);
MenuVo menu1 = new MenuVo(1L, 0L);
menu1.setRank(100);
MenuVo menu2 = new MenuVo(2L, 0L);
menu2.setRank(1);
MenuVo menu3 = new MenuVo(3L, 1L);
MenuVo menu4 = new MenuVo(4L, 1L);
MenuVo menu5 = new MenuVo(5L, 2L);
menu5.setRank(5);
MenuVo menu6 = new MenuVo(6L, 2L);
MenuVo menu7 = new MenuVo(7L, 3L);
menu7.setRank(5);
MenuVo menu8 = new MenuVo(8L, 3L);
menu8.setRank(1);
MenuVo menu9 = new MenuVo(9L, 4L);
List<MenuVo> menuList = Arrays.asList(menu0,menu1, menu2,menu3,menu4,menu5,menu6,menu7,menu8,menu9);
//合成树
List<MenuVo> tree= TreeUtil.makeTree(menuList, x->x.getPId()==-1L,(x, y)->x.getId().equals(y.getPId()), MenuVo::setSubMenus);
System.out.println(JsonUtils.toJson(tree));
如果我们想按rank正序:
List<MenuVo> sortTree= TreeUtil.sort(tree, Comparator.comparing(MenuVo::getRank), MenuVo::getSubMenus);
如查我们想按rank倒序:
List<MenuVo> sortTree= TreeUtil.sort(tree, (x,y)->y.getRank().compareTo(x.getRank()), MenuVo::getSubMenus);
sort参数解释:
tree 需要排序的树,就是makeTree()合成的对象
Comparator<? super E> comparator 排序规则Comparator,如:Comparator.comparing(MenuVo::getRank) 按Rank正序 ,
(x,y)->y.getRank().compareTo(x.getRank()),按Rank倒序
Function<E, List> getChildren 获取下级数据方法,
如:MenuVo::getSubMenus
这个给树排序是不是和对List排序一样的简单:三个字:太绝了!!!
07
看完这位大神编写的TreeUtil工具类后,我深感佩服,其设计与实现真是令人叹为观止。该工具类不仅优雅且高效,使得以往需要递归处理的树形结构操作变得更加简洁和便捷。未来处理树形数据时,只需直接使用该工具类即可,无需再编写复杂的递归代码。
最后附完成代码方便CV工程师,还不赶快点赞、关注、收藏
/**
* @Description: 树操作方法工具类
* @Author: 公众号:赵侠客
* @Copyright: Copyright (c) 赵侠客
* @Date: 2024-07-22 10:42
* @Version: 1.0
*/
public class TreeUtil {
/**
* 将list合成树
*
* @param list 需要合成树的List
* @param rootCheck 判断E中为根节点的条件,如:x->x.getPId()==-1L , x->x.getParentId()==null,x->x.getParentMenuId()==0
* @param parentCheck 判断E中为父节点条件,如:(x,y)->x.getId().equals(y.getPId())
* @param setSubChildren E中设置下级数据方法,如:Menu::setSubMenus
* @param <E> 泛型实体对象
* @return 合成好的树
*/
public static <E> List<E> makeTree(List<E> list, Predicate<E> rootCheck, BiFunction<E, E, Boolean> parentCheck, BiConsumer<E, List<E>> setSubChildren) {
return list.stream().filter(rootCheck).peek(x -> setSubChildren.accept(x, makeChildren(x, list, parentCheck, setSubChildren))).collect(Collectors.toList());
}
/**
* 将树打平成tree
* @param tree 需要打平的树
* @param getSubChildren 设置下级数据方法,如:Menu::getSubMenus,x->x.setSubMenus(null)
* @param setSubChildren 将下级数据置空方法,如:x->x.setSubMenus(null)
* @return 打平后的数据
* @param <E> 泛型实体对象
*/
public static <E> List<E> flat(List<E> tree, Function<E, List<E>> getSubChildren, Consumer<E> setSubChildren) {
List<E> res = new ArrayList<>();
forPostOrder(tree, item -> {
setSubChildren.accept(item);
res.add(item);
}, getSubChildren);
return res;
}
/**
* 前序遍历
*
* @param tree 需要遍历的树
* @param consumer 遍历后对单个元素的处理方法,如:x-> System.out.println(x)、 System.out::println打印元素
* @param setSubChildren 设置下级数据方法,如:Menu::getSubMenus,x->x.setSubMenus(null)
* @param <E> 泛型实体对象
*/
public static <E> void forPreOrder(List<E> tree, Consumer<E> consumer, Function<E, List<E>> setSubChildren) {
for (E l : tree) {
consumer.accept(l);
List<E> es = setSubChildren.apply(l);
if (es != null && es.size() > 0) {
forPreOrder(es, consumer, setSubChildren);
}
}
}
/**
* 层序遍历
*
* @param tree 需要遍历的树
* @param consumer 遍历后对单个元素的处理方法,如:x-> System.out.println(x)、 System.out::println打印元素
* @param setSubChildren 设置下级数据方法,如:Menu::getSubMenus,x->x.setSubMenus(null)
* @param <E> 泛型实体对象
*/
public static <E> void forLevelOrder(List<E> tree, Consumer<E> consumer, Function<E, List<E>> setSubChildren) {
Queue<E> queue = new LinkedList<>(tree);
while (!queue.isEmpty()) {
E item = queue.poll();
consumer.accept(item);
List<E> childList = setSubChildren.apply(item);
if (childList != null && !childList.isEmpty()) {
queue.addAll(childList);
}
}
}
/**
* 后序遍历
*
* @param tree 需要遍历的树
* @param consumer 遍历后对单个元素的处理方法,如:x-> System.out.println(x)、 System.out::println打印元素
* @param setSubChildren 设置下级数据方法,如:Menu::getSubMenus,x->x.setSubMenus(null)
* @param <E> 泛型实体对象
*/
public static <E> void forPostOrder(List<E> tree, Consumer<E> consumer, Function<E, List<E>> setSubChildren) {
for (E item : tree) {
List<E> childList = setSubChildren.apply(item);
if (childList != null && !childList.isEmpty()) {
forPostOrder(childList, consumer, setSubChildren);
}
consumer.accept(item);
}
}
/**
* 对树所有子节点按comparator排序
*
* @param tree 需要排序的树
* @param comparator 排序规则Comparator,如:Comparator.comparing(MenuVo::getRank)按Rank正序 ,(x,y)->y.getRank().compareTo(x.getRank()),按Rank倒序
* @param getChildren 获取下级数据方法,如:MenuVo::getSubMenus
* @return 排序好的树
* @param <E> 泛型实体对象
*/
public static <E> List<E> sort(List<E> tree, Comparator<? super E> comparator, Function<E, List<E>> getChildren) {
for (E item : tree) {
List<E> childList = getChildren.apply(item);
if (childList != null && !childList.isEmpty()) {
sort(childList,comparator,getChildren);
}
}
tree.sort(comparator);
return tree;
}
private static <E> List<E> makeChildren(E parent, List<E> allData, BiFunction<E, E, Boolean> parentCheck, BiConsumer<E, List<E>> children) {
return allData.stream().filter(x -> parentCheck.apply(parent, x)).peek(x -> children.accept(x, makeChildren(x, allData, parentCheck, children))).collect(Collectors.toList());
}
}