平面图形 【认识、周长、面积】 一、用直尺把两点连接起来,就得到一条线段; 把线段的一端无限延长,可以得到一条射线; 把线段的两端无限延长,可以得到一条直线。 线段、射线都是直线上的一部分。 线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。 二、从一点引出两条射线,就组成了一个角。 角的大小与两边叉开的大小有关,与边的长短无关。 角的大小的计量单位是(°)。 三、角的分类: 小于90度的角是锐角; 等于90度的角是直角; 大于90度小于180度的角是钝角; 等于180度的角是平角;等于360度的角是周角。 四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。 五、三角形是由三条线段围成的图形。 围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。 六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。 按边分,可以分为等边三角形、等腰三角形和任意三角形。 七、三角形的内角和等于180度。 八、在一个三角形中,任意两边之和大于第三边。 九、在一个三角形中,最多只有一个直角或最多只有一个钝角。 十、四边形是由四条边围成的图形。 常见的特殊四边形有:平行四边形、长方形、正方形、梯形。 十一、圆是一种曲线图形。 圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。 通过圆心并且两端都在圆的线段叫做圆的直径。 十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。 这条直线叫做对称轴。 十三、围成一个图形的所有边长的总和就是这个图形的周长。 十四、物体的表面或围成的平面图形的大小,叫做它们的面积。 十五、平面图形的面积计算公式推导: 【1】平行四边形面积公式的推导过程? ① 把平行四边形通过剪切、平移可以转化成一个长方形。 ② 长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。 ③ 因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。【2】三角形面积公式的推导过程? ① 用两个完全一样的三角形可以拼成一个平行四边形。 ② 平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半 ③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。即:S=ah÷2。 【3】梯形面积公式的推导过程? ① 用两个完全一样的梯形可以拼成一个平行四边形。 ② 平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。 ③ 因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。 【4】画图说明圆面积公式的推导过程 ① 把圆分成若干等份,剪开后,拼成了一个近似的长方形。 ② 长方形的长相当于圆周长的一半,宽相当于圆的半径。 ③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr²。即:S=πr²。 十六、平面图形的周长和面积计算公式:
长方形周长 =(长+宽)× 2
C = πd
长方形面积 = 长 × 宽
C = 2πr
正方形周长 = 边长 × 4
r= d÷2
正方形面积 = 边长 × 边长
r=C ÷2π
平行四边形面积 = 底 × 高
d=2r
三角形面积 = 底 × 高 ÷ 2
d=c ÷π
十七、常用数据:
常用π值
常用平方数
2π=6.28
12π=37.68
1²= 1
3π=9.42
15π=47.1
2²=4
4π=12.56
16π=50.24
3²=9
5π=15.70
18π=56.52
4²=16
6π=18.84
20π=62.8
5²=25
7π=21.98
25π= 78.5
6²=36
8π=25.12
32π=100.48
7²=49
9π=28.26
2.25π=7.065
8²=64
10π=31.4
6.25π=19.625
9²=81
立体图形 【认识、表面积、体积】 一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。 二、圆柱的特征:一个侧面、两个底面、无数条高。 三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。 四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。 五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。 六、圆柱和圆锥三种关系: ① 等底等高:体积1︰3 ② 等底等体积:高1︰3 ③ 等高等体积:底面积1︰3 七、等底等高的圆柱和圆锥: ① 圆锥体积是圆柱的1/3, ② 圆柱体积是圆锥的3倍,③ 圆锥体积比圆柱少2/3, ④ 圆柱体积比圆锥多2倍。 八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。 九、立体图形公式推导: 【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程) ① 圆柱的侧面展开后一般得到一个长方形。② 长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。 ③ 因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。 ④ 圆柱的侧面展开后还可能得到一个正方形。 正方形的边长=圆柱的底面周长=圆柱的高。 【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系? ① 把圆柱分成若干等份,切开后拼成了一个近似的长方体。 ② 长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。 ③ 因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。 【3】请画图说明圆锥体积公式的推导过程? ① 找来等底等高的空圆锥和空圆柱各一只。 ② 将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。 ③ 通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=1/3Sh。 十、立体图形的棱长总和、表面积、体积计算公式: