CVPR投稿倒计时15天!Transformer还能卷出哪些新花样?

文摘   2024-11-01 10:00   英国  

扫码进入可联系管理员免费领取GPT账号!

AI大语言模型与人工智能教学方案专题

专题一:2024最新全流程ChatGPT深度科研应用、论文与项目撰写、数据分析、机器学习、深度学习及AI绘图

专题二:度学习全进阶:最新python深度学习进阶与前沿

专题三:2025年国自然基金项目撰写技巧与ChatGPT融合应用

专题四:AI大语言模型优化、本地化部署、智能体构建、多模态、时间序列、目标检测及语义分割实战技术应用高

最新充值活动:最高购课可享受75折优惠同时赠送24个月国内可直接登录GPT4/4o会员账号,详细见文章末尾!

专题详情如下

专题一:

2024最新全流程ChatGPT深度科研应用、论文与项目撰写、数据分析、机器学习、深度学习及AI绘图高级培训班

【全网唯一授课4天的ChatGPT课程】

2022年11月30日,可能将成为一个改变人类历史的日子——美国人工智能开发机构OpenAI推出了聊天机器人ChatGPT3.5,将人工智能的发展推向了一个新的高度。2023年4月,更强版本的ChatGPT4.0上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。2023年11月7日,OpenAI首届开发者大会被称为“科技界的春晚”,吸引了全球广大用户的关注,GPT商店更是显现了OpenAI旨在构建AI生态的野心。因此,为了帮助广大科研人员更加熟练地掌握ChatGPT4.0在数据分析、自动生成代码等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理论知识,以及具体的代码实现方法,特举办“最新ChatGPT办公与科研应用、论文撰写、数据分析、机器学习、深度学习及AI绘图高级”培训班,旨在帮助学员掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM


神经网络、YOLO目标检测、自编码器等)的基本原理及Python、PyTorch代码实现方法。本次培训采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出讲解ChatGPT4.0的最新功能,以及经典人工智能方法在实际应用时需要掌握的经验及技巧。,时

一、组织机构

主办单位:Ai尚研修

承办单位:尚研修(保定)信息科技有限公司

二、培训时间及方式

【培训方式】:直播与现场培训同步进行

【现场时间】:2024年11月6日-11月10日地点:武汉
【直播时间】:2024年11月7日-11月10日【腾讯会议】
  上午:9:30:00-12:00 下午:14:00-17:30

三、会议福利

四、课程内容

课程安排

学习内容

第一章

2024大语言模型最新进展ChatGPT各模型讲解

12024 AIGC技术最新进展介绍(生成式人工智能的基本概念与原理、文生视频模型OpenAI Sora vs.Google Veo

2(实操演练)国内外大语言模型(ChatGPT 4OGeminiClaudeLlama3、文心一言、星火、通义千问、Kimi、智谱清言等)对比分析

3、最新加入:(实操演练)OpenAI o1-preview大语言模型功能演示、新特性简介及与ChatGPT-4o差异对比

4(实操演练)Llama3开源大语言模型的本地部署、对话与微调训练本地数据

5(实操演练)ChatGPT-4o对话初体验(注册与充值、购买方法)

6(实操演练)ChatGPT-4o科研必备GPT汇总介绍(寻找好用的GPTs模型、提示词优化、生成思维导图、生成PPT、生成视频、制定个性化的学习计划、检索论文、总结论文内容、总结视频内容、撰写论文、论文翻译、论文润色与修改、参考文献格式管理、论文评审、数据分析、生成代码、代码调试等)

7(实操演练)GPT Store简介与使用

8(实操演练)定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

9(实操演练)ChatGPT-4o对话记录保存与管理

第二章

 ChatGPT-4o提示词使用方法与高级技巧
最新加入思维链及逆向工程及GPTs

1(实操演练)ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2(实操演练)常用的ChatGPT提示词模板

3、最新加入:(实操演练)基于思维链(Chain of Thought, CoT)的ChatGPT提示词优化(让OpenAI o1推理能力变强的诀窍之一)

4(实操演练)ChatGPT-4o提示词优化(PromptestPrompt PerfectPromptPal提示宝等)

5(实操演练)ChatGPT-4o突破Token限制实现接收或输出万字长文(Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

6(实操演练)控制ChatGPT-4o的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

7(实操演练)保存喜欢的ChatGPT-4o提示词并一键调用

8.最新加入:(实操演练)ChatGPT-4o提示词逆向工程(破解提示词的常用方法、对别人创建的GPTs提示词进行破解)

9.最新加入(实操演练)ChatGPT-4o提示词保护策略以及构建坚不可摧的GPTs

第三章

ChatGPT-4o助力日常生活、学习与工作

1(实操演练)ChatGPT-4o助力中小学生功课辅导(写作文、作文批改、求解数学题、练习英语听说读写、物理计算、化学计算等)

2(实操演练)ChatGPT-4o助力文案撰写与润色修改

3(实操演练)ChatGPT-4o助力家庭健康管理(化验单结果解读、就诊咨询与初步诊断、常见慢病管理、日常营养膳食建议等)

4(实操演练)ChatGPT-4o助力大学生求职与就业(撰写简历、模拟面试、职业规划等)

5(实操演练)ChatGPT-4o助力商业工作(行业竞品检索与分析、产品创意设计与建议、推广营销策略与方案制定、撰写合同)

6(实操演练)利用ChatGPT-4o创建精美的思维导图

7(实操演练)利用ChatGPT-4o生成流程图、甘特图

8(实操演练)利用ChatGPT-4o制作PPT

9(实操演练)利用ChatGPT-4o自动创建视频

10(实操演练)ChatGPT-4o辅助教师高效备课(苏格拉底式教学、为不同专业学生生成不同的教学内容等)

11(实操演练)ChatGPT-4o辅助学生高效学习(利用GPTs生成专属学习计划)

第四章

基于ChatGPT-4o课题申报、论文选题及实验方案设计

1、课题申请书撰写技巧及要点剖析(项目名称、关键词、摘要、立项依据、参考文献、研究目标、研究内容、研究方案、关键科学问题、可行性分析、创新点与特色之处、预期研究成果、工作基础等)

2(实操演练)利用ChatGPT-4o分析指定领域的热门研究方向

3(实操演练)利用ChatGPT-4o辅助撰写、润色课题申报书的各部分内容

4(实操演练)利用ChatGPT-4o总结指定论文的局限性与不足,并给出潜在的改进思路与建议

5(实操演练)利用ChatGPT-4o评估指定改进思路新颖性与已发表的类似工作

6(实操演练)利用ChatGPT-4o进一步细化改进思路,凝练论文的选题与创新点

7(实操演练)利用ChatGPT-4o给出具体的算法步骤,并自动生成算法的Python示例代码框架

8(实操演练)利用ChatGPT-4o设计完整的实验方案与数据分析流程

9(实操演练)利用ChatGPT-4o给出论文Discussion部分的切入点和思路

10、案例演示与实操练习

第五章

基于ChatGPT-4o信息检索、总结分析、论文写作与投稿、专利idea构思与交底书的撰写

1(实操演练)传统信息检索方法与技巧总结(Google ScholarResearchGateSci-HubGitHub、关键词检索+同行检索、文献订阅)

2(实操演练)利用ChatGPT-4o实现联网检索文献

3(实操演练)利用ChatGPT-4o阅读与总结分析学术论文内容(论文主要工作、创新点、局限性与不足、多文档对比分析等)

4(实操演练)利用ChatGPT-4o解读论文中的系统框图工作原理

5(实操演练)利用ChatGPT-4o解读论文中的数学公式含义

6(实操演练)利用ChatGPT-4o解读论文中图表中数据的意义及结论

7(实操演练)ChatGPT-4o总结Youtube视频内容

8(实操演练)利用ChatGPT-4o完成学术论文的选题设计与优化

9(实操演练)利用ChatGPT-4o自动生成论文的总体框架、论文摘要、前言介绍、文献综述、完整长篇论文等

10(实操演练)利用ChatGPT-4o完成论文翻译(指定翻译角色和翻译领域、提供背景提示)

11(实操演练)利用ChatGPT-4o实现论文语法校正

12(实操演练)利用ChatGPT-4o完成段落结构及句子逻辑润色

13(实操演练)利用ChatGPT-4o完成论文降重

14(实操演练)利用ChatGPT-4o完成论文参考文献格式的自动转换

15(实操演练)ChatGPT-4o辅助审稿人完成论文评审意见的撰写

16(实操演练)ChatGPT-4o辅助投稿人完成论文评审意见的回复

17(实操演练)ChatGPT-4o文献检索、论文写作必备GPTs总结

18(实操演练)利用ChatGPT-4o完成发明专利idea的挖掘与构思

19(实操演练)利用ChatGPT-4o完成发明专利交底书的撰写

20、最新加入:(实操演练)利用ChatGPT-4o with canvas完成人机交互协同修改论文(智能修改建议、篇幅调整、阅读水平等级调整、润色修改等)

 

 

 

 

第六章

ChatGPT-4o编程入门、科学计算、数据可视化、数据预处理
Python融合】

1(实操演练)Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;PythonHello World;第三方模块的安装与使用;Python 2.xPython 3.x对比)

2(实操演练)Python基本语法(Python变量命名规则;Python基本数学运算;Python常用变量类型的定义与操作;Python程序注释)

3(实操演练)Python流程控制(条件判断;for循环;while循环;breakcontinue

4(实操演练)Python函数与对象(函数的定义与调用;函数的参数传递与返回值;变量作用域与全局变量;对象的创建与使用)

5(实操演练)Matplotlib的安装与图形绘制(设置散点、线条、坐标轴、图例、注解等属性;绘制多图;图的嵌套;折线图、柱状图、饼图、地图等各种图形的绘制)

6(实操演练)SeabornBokehPyecharts等高级绘图库的安装与使用(动态交互图的绘制、开发大数据可视化页面等)

7(实操演练)科学计算模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

8(实操演练)利用ChatGPT-4o上传本地数据(Excel/CSV表格、txt文本、PDF、图片等)

9(实操演练)利用ChatGPT-4o实现图像处理(图像缩放、旋转、裁剪、去噪与去模糊)

10(实操演练)利用ChatGPT-4o实现描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:数据的相关分析)

11(实操演练)常用的数据预处理方法(数据标准化与归一化、数据异常值与缺失值处理、数据离散化及编码处理、手动生成新特征)

12(实操演练)融合ChatGPT-4oPython的数据预处理代码自动生成与运行

13(实操演练)利用ChatGPT-4o自动生成数据统计分析图表

14(实操演练)利用ChatGPT-4o实现代码逐行讲解

15(实操演练)利用ChatGPT-4o实现代码Bug调试与自动修改

16、案例演示与实操练习

 

 

 

 

 

 

 

 

 

 

 

第七章

ChatGPT-4o机器学习建模及高级应用

1BP神经网络的基本原理(人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2(实操演练)BP神经网络的Python代码实现(划分训练集和测试集、数据归一化)

3(实操演练)BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)

4(实操演练)值得研究的若干问题(欠拟合与过拟合、评价指标选择、样本不平衡等)

5(实操演练)BP神经网络中的ChatGPT提示词库讲解

6(实操演练)利用ChatGPT-4o实现BP神经网络模型的代码自动生成与运行

7SVM的工作原理(核函数的作用是什么?什么是支持向量?如何解决多分类问题?)

8、决策树的工作原理(什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系)

9、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”的本质是什么?怎样可视化、解读随机森林的结果?)

10BaggingBoosting的区别与联系

11AdaBoost vs. Gradient Boosting的工作原理

12(实操演练)常用的GBDT算法框架(XGBoostLightGBM

13(实操演练)决策树、随机森林、XGBoostLightGBM中的ChatGPT提示词库讲解

14(实操演练)利用ChatGPT-4o实现决策树、随机森林、XGBoostLightGBM模型的代码自动生成与运行

15、案例演示与实操练习

第八章

ChatGPT-4o助力机器学习模型优化:变量降维与特征选择

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理

3(实操演练)常见的特征选择方法(优化搜索、FilterWrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)

4、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?选择、交叉、变异三个算子的作用分别是什么?)

5(实操演练)PCAPLS、特征选择、群优化算法的ChatGPT-4o提示词库讲解

6(实操演练)利用ChatGPT-4o及插件实现变量降维与特征选择算法的代码自动生成与运行

 

 

 

 

 

第九章

ChatGPT-4o实现卷积神经网络建模与代码自动生成

1、深度学习简介(深度学习大事记、深度学习与传统机器学习的区别与联系)

2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?)

3、卷积神经网络的进化史:LeNetAlexNetVgg-16/19GoogLeNetResNet等经典深度神经网络的区别与联系

4(实操演练)利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

5(实操演练)卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

6(实操演练)卷积神经网络中的ChatGPT-4o提示词库讲解

7(实操演练)利用ChatGPT-4o实现卷积神经网络模型的代码自动生成与运行

1CNN预训练模型实现物体识别;

2)利用卷积神经网络抽取抽象特征;

3)自定义卷积神经网络拓扑结构

8、案例演示与实操练习

第十章

ChatGPT-4o迁移学习建模与代码自动生成

1、迁移学习算法的基本原理

2(实操演练)基于深度神经网络模型的迁移学习算法

3(实操演练)迁移学习中的ChatGPT-4oT提示词库讲解

4(实操演练)利用ChatGPT-4o实现迁移学习模型的代码自动生成与运行

5、实操练习

第十一章

ChatGPT-4o助力RNNLSTM建模与代码自动生成

1、循环神经网络RNN的基本工作原理

2、长短时记忆网络LSTM的基本工作原理

3(实操演练)RNNLSTM中的ChatGPT-4o提示词库讲解

4(实操演练)利用ChatGPT-4o实现RNNLSTM模型的代码自动生成与运行

5、案例演示与实操练习

第十二章

ChatGPT-4o助力YOLO目标检测建模与代码自动生成

1、什么是目标检测?目标检测与目标识别的区别与联系

2YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别

3(实操演练)YOLO模型中的ChatGPT-4o提示词库讲解

4(实操演练)利用ChatGPT-4o实现YOLO目标检测模型的代码自动生成与运行

1)利用预训练好的YOLO模型实现图像、视频、摄像头实时检测;

2)数据标注演示(LabelImage使用方法介绍);

3)训练自己的目标检测数据集

5、案例演示与实操练习

第十三章

ChatGPT-4o机器学习与深度学习建模的案例实践应用

1、(实操演练)利用ChatGPT-4o实现近红外光谱分析模型的建立、代码自动生成与运行

2、(实操演练)利用ChatGPT-4o实现生物医学信号(时间序列、图像、视频数据)分类识别与回归拟合模型的建立、代码自动生成与运行

3、(实操演练)利用ChatGPT-4o实现遥感图像目标检测、地物分类及语义分割模型的建立、代码自动生成与运行

4、(实操演练)利用ChatGPT-4o实现大气污染物预测模型的建立、代码自动生成与运行

5、(实操演练)利用ChatGPT-4o实现自然语言处理模型的建立、代码自动生成与运行

6、案例演示与实操练习

第十四章

ChatGPT-4o高级绘图技术

1(实操演练)利用ChatGPT-4o DALL.E 3生成图像(下载图像、修改图像)

2(实操演练)ChatGPT-4o DALL.E 3常用的提示词库(广告海报、Logo3D模型、插画、产品包装、烹饪演示、产品外观设计、UI设计、吉祥物设计等)

3(实操演练)ChatGPT-4o DALL.E 3中的多种视图(正视图、后视图、侧视图、四分之三视图、鸟瞰视图、全景视图、第一人称视角、分割视图、截面视图等)

4(实操演练)ChatGPT-4o DALL.E 3中的多种光效(电致发光、化学发光、生物荧光、极光闪耀、全息光等)

5(实操演练)ChatGPT-4o DALL.E 3格子布局与角色一致性的实现

6(实操演练)ChatGPT-4o DALL.E 3生成动图GIF

7(实操演练)Midjourney工具使用讲解

8(实操演练)Stable Diffusion工具使用讲解

9(实操演练)Runway图片生成动画工具使用讲解

10、案例演示与实操练习

第十五章

基于ChatGPT-4o API接口调用与完整项目开发

1(实操演练)GPT模型API接口的调用方法(API Key的申请、API Key接口调用方法与参数说明)

2(实操演练)利用GPTAPI实现完整项目开发

1)聊天机器人的开发

2)利用GPT APIText Embedding生成文本的特征向量

3)构建基于多模态(语音、文本、图像)的阿尔茨海默病早期筛查程序

3、案例演示与实操练习

第十六章

 面向科研场景的ChatGPT-4o提示词工程大赛【科研创意Prompt挑战】

活动背景:为了提升科研人员在科研过程中的提示词撰写能力,特举办ChatGPT培训课程,并在课程中加入【提示词大赛】环节,通过比赛形式激发学员的创意和实践能力。

活动目标:通过【提示词大赛】,提高学员在科研过程中撰写提示词的能力,激发创意与实践结合,为未来的科研工作提供更好的支持和帮助。

参赛对象: 参加本次ChatGPT培训课程的所有科研人员。

赛题内容: 培训课程第一天结束后公布具体赛题,赛题将围绕科研过程中不同环节的提示词撰写。

提交方式: 学员需在培训课程第三天晚前提交答案,具体提交方式将在赛题公布时一并说明。

奖项设置:一等奖1名、二等奖2名、三等奖 3名【设置奖项详细见流程说明】

评委评选: 由培训导师及特邀评委组成评审团,对所有提交的提示词进行评选。
评选标准: 提示词的创意、准确性、实用性及与科研主题的契合度。

备注:详细在会议中具体说明。

注:请提前自备电脑及安装所需软件。


专题二:

深度学习全进阶:最新python深度学习进阶与前沿应用高级培训班

点击观看往期部分课程

    参会条件:(备注:该培训课程为进阶课程,需要学员掌握卷积神经网络、循环神经网络等前序基础知识。同时,应具备一定的Python编程基础,熟悉numpypandasmatplotlibscikit-learnpytorch等第三方模块库。)

近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。为了帮助广大学员更加深入地学习人工智能领域最近3-5年的新理论与新技术,Ai尚研修推出全新的“Python深度学习进阶与应用”培训课程,让你系统掌握AI新理论、新方法及其Python代码实现。课程采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出讲解注意力机制、Transformer模型(BERTGPT-1/2/3/3.5/4DETRViTSwin Transformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GAN、扩散模型Diffusion Model等)、目标检测算法(R-CNNFast R-CNNFaster R-CNNYOLOSDD等)、图神经网络(GCNGATGIN等)、强化学习(Q-LearningDQN等)、深度学习模型可解释性与可视化方法(CAMGrad-CAMLIMEt-SNE等)的基本原理及Python代码实现方法。(备注:该培训课程为进阶课程,需要学员掌握卷积神经网络、循环神经网络等前序基础知识。同时,应具备一定的Python编程基础,熟悉numpypandasmatplotlibscikit-learnpytorch等第三方模块库。)现通知如下:

一、组织机构

主办单位:Ai尚研修

承办单位:尚研修(保定)信息科技有限公司

二、培训时间及方式

【培训方式】:直播与现场培训同步进行

【现场时间】:2024年11月14日-17日 地点:南京

【直播时间】:202411月15日-17日【腾讯会议直播】

【三天实践课程,提供全部资料及回放】

每日时间:上午:9:30:00-12:00 下午:14:00-17:30

三、课程内容

课程安排

课程导学

第一章

注意力(Attention)机制详解

1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展)。

2、注意力机制的基本原理:什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?

3、注意力机制的主要类型:自注意力(Self-Attention)与多头注意力(Multi-Head AttentionSoft Attention 与 Hard Attention全局(Global)与局部(Local)注意力

4、注意力机制的优化与变体:稀疏注意力(Sparse Attention加权注意力(Weighted Attention

5、注意力机制的可解释性与可视化技术:注意力权重的可视化(权重热图)

6、案例演示     7、实操练习

第二章

Transformer模型详解

1Transformer模型的提出背景(RNNLSTM到注意力机制的演进、Transformer模型的诞生背景及其在自然语言处理和计算视觉中的重要性

2Transformer模型拓扑结构(编码器、解码器、多头自注意力机制、前馈神经网络、层归一化和残差连接等)

2Transformer模型工作原理(为什么Transformer模型需要位置信息?位置编码的计算方法?Transformer模型的损失函数?)

3、自然语言处理(NLP)领域的Transformer模型BERTGPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、……)。

4、计算视觉(CV)领域的Transformer模型DETR / ViT / Swin TransformerDERT:基于Transformer的检测头设计、双向匹配损失;ViT:图像如何被分割为固定大小的patches?如何将图像patches线性嵌入到向量中?Transformer在处理图像上的作用?Swin:窗口化自注意力机制、层次化的Transformer结构、如何利用位移窗口实现长范围的依赖?)

5、案例演示       6、实操练习

第三章

生成式模型详解

1、变分自编码器VAE(自编码器的基本结构与工作原理、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)。

2、生成式对抗网络GANGAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数)。

3、扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)。

4、跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)。

5、案例演示            6、实操练习

第四章

目标检测算法详解

1. 目标检测任务与图像分类识别任务的区别与联系。

2. 两阶段(Two-stage)目标检测算法:R-CNNFast R-CNNFaster R-CNNRCNN的工作原理、Fast R-CNNFaster R-CNN的改进之处 )。

3. 一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)。

4. 案例演示          5、实操练习

第五章

图神经网络详解

1. 图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)

2. 图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)。

3. 图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)。

4. 图卷积网络(GCN)的工作原理。

5. 图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络。

6、案例演示        7、实操练习

第六章

强化学习详解

1、强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?

2Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)。

3、深度Q网络(DQN(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)

4、案例演示         5、实操练习

第七章

物理信息神经网络

PINN

1、 物理信息神经网络的背景物理信息神经网络(PINNs)的概念及其在科学计算中的重要性传统数值模拟方法与PINNs的比较

2、 PINN工作原理:物理定律与方程的数学表达、如何将物理定律嵌入到神经网络模型中PINN的架构(输入层、隐含层、输出层的设计)、物理约束的形式化(如何将边界条件等物理知识融入网络?)损失函数的设计(数据驱动与物理驱动的损失项)

3、 常用的PINN库和框架介绍

4、 案例演示         5、实操练习

第八章

神经架构搜索(Neural Architecture Search, NAS

1、 NAS的背景和动机(传统的神经网络设计依赖经验和直觉,既耗时又可能达不到最优效果。通过自动搜索,可以发现传统方法难以设计的创新和高效架构。

2、 NAS的基本流程:搜索空间定义(确定搜索的网络架构的元素,如层数、类型的层、激活函数等。)、搜索策略随机搜索、贝叶斯优化、进化算法、强化学习等)、性能评估

3、 NAS的关键技术:进化算法(通过模拟生物进化过程,如变异、交叉和选择,来迭代改进网络架构)、强化学习(使用策略网络来生成架构,通过奖励信号来优化策略网络)、贝叶斯优化(利用贝叶斯方法对搜索空间进行高效的全局搜索,平衡探索和利用)

4、 案例演示         5、实操练习

第九章

深度学习模型可解释性与可视化方法详解

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAMClass Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIMELocal Interpretable Model-agnostic Explanation)、等方法原理讲解。

4t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征。

5、案例演示         6、实操练习

第十章

讨论与答疑

1、相关学习资料分享与拷贝(图书推荐、在线课程推荐等)

2、建立微信群,便于后期的讨论与答疑

注:请提前自备电脑及安装所需软件。

专题三:

2025年国自然基金项目撰写技巧与ChatGPT融合应用培训班

      随着社会经济发展和科技进步,基金项目对创新性的要求越来越高。申请人需要提出独特且有前瞻性的研究问题,具备突破性的科学思路和方法。因此,基金项目申请往往需要进行跨学科的技术融合。申请人需要与不同领域结合,形成多学科交叉的研究。基金项目申请在新时期更加注重国际化视野。申请人需要关注国际前沿研究动态,积极参与国际合作项目,并能够充分展示项目对国际学术和科技发展的贡献。

    尤其是青年学者,工作繁重、资源溃泛、基金申请缺乏经验、同时没有形成高效研究团队,仅凭一己之力,在竞争激烈的当下显然不具备优势条件。基金申请是每年学者重要工作内容,势必要时间与精力投入,但往往是在提交前,集中一个有限的时间进行撰写,结果事与愿违。

       您的基金撰写过程中是否存在以下问题:摘要如何写才能给评阅专家留下最美好的第一印象?技术路线图如何设计才能吸引评阅专家的目光?如何区分难点问题和关键科学问题?每个章节突出哪些内容才能让项目书更加清晰明了?Ai尚研修应广大学者要求,特召开“2024年科研项目基金撰写要点及技巧培训班”现通知如下:

一、组织机构

主办单位:Ai尚研修

承办单位:尚研修(保定)信息科技有限公司

二、培训时间及方式

【培训方式】:腾讯会议直播

【直播时间】2024年11月16日-11月17日【两天实践教学、提供全部资料及回放
每日时间:上午:9:30:00-12:00 下午:14:00-17:30

三、会议福利

赠送一个月国内直接可登录ChatGPT4/4o会员账号【无需科学上网,功能与openAI官网账号一样】

四、课程内容

课程安排

学习内容

专题一

国自然项目介绍

1.1项目介绍        

1.2接收情况

1.3受理情况              

1.4近五年资助情况

1.5国自然项目解读

1.6省级项目解读                      

1.7博后项目介绍

专题二

基金的撰写技巧(从申请人的角度,带你一次入门)

2.1 问题属性与评阅标准

2.2 前期准备工作-如何去选题

2.3 项目撰写

2.3.1 题目的设计

2.3.1.1 题目确定:如何设计一个合适的题目

2.3.2 项目的研究内容、研究目标,以及拟解决的关键科学问题

2.3.2.1 研究内容的四点注意事项          

2.3.2.2 研究目标如何精准定位

2.3.2.3 关键科学问题的提炼方法-一个行之有效的小技巧

2.3.3 拟采取的研究方案及可行性分析

2.3.3.1 研究方案:如何安排总述与总图

2.3.3.2技术路线:如何将技术细节做到一一对应     

2.3.3.3 可行性分析:如何通过三个维度分析到位

2.3.4 本项目的特色与创新之处:多个角度分析

2.3.5 年度研究计划与预期成果:

2.3.5.1 研究计划如何布局推进                 

2.3.5.2 预期成果有哪些细微区别

2.3.6 研究基础与工作条件

2.3.6.1 研究基础-如何突出与代表作的联系        

2.3.6.2工作条件-如何充分展现平台优势

2.3.7 其他注意事项

专题三

基金的专项技巧(从评审专家的角度,带您逐一突破)

3.1 了解评审专家的视角         

3.2 最关键的细节-摘要的写法      

3.3 如何挑选的五篇代表作

3.4 手把手带你画技术路线图    

3.5 如何合理安排研究经费      

3.6其他备受关注的问题

3.7最后的自查-自查十连问

专题四

ChatGPT在基金撰写中的妙用

4.1 ChatGPT高效搜索

4.2 ChatGPT梳理文献

4.3 ChatGPT选择基金题目

4.4 ChatGPT生成基金提纲

4.5 ChatGPT助力摘要书写

4.6 ChatGPT形成文献综述

4.7 ChatGPT推荐研究方向

4.8 ChatGPT扩写基金内容

4.9 ChatGPT精简基金内容

4.10 ChatGPT润色基金文字

4.11 ChatGPT仿写指定风格

4.12 ChatGPT降重文本内容

4.13 ChatGPT搜索关键图片

4.14 ChatGPT分析评审意见

4.15 ChatGPT开发科研工具


往届学员反馈


  

视频课程系列推荐

名师指导

 

提供全套上课资料【课件、案例数据、代码、参考资料等】+课程长期有效+导师群长期辅助学习


生物科研服务


最新充值活动


联系方式

以上内容扫码咨询课程顾问




END



END

Ai尚研修丨专注科研领域

技术推广,人才招聘推荐,科研活动服务

科研技术云导师,Easy  Scientific  Research

多模态机器学习与大模型
多模态机器学习与大模型 致力于推荐、分享、解读多模态机器学习相关的前沿论文成果,讨论大语言模型先进技术,助力AI研究者进步。 合作交流请+V:Multimodal2024,谢谢❤️
 最新文章