R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例

科技   科技   2024-09-02 17:09   浙江  

全文链接:https://tecdat.cn/?p=34543


贝叶斯MCMC模拟是一个丰富的领域,涵盖了各种算法,共同目标是近似后验模型点击文末“阅读原文”获取完整代码数据

相关视频


例如,使用的rstan包采用了一个Hamiltonian Monte Carlo算法。用于贝叶斯建模的另一个rjags包采用了Gibbs sampling算法。尽管细节有所不同,但这两种算法都是基于基本的Metropolis-Hastings算法的变体。

主要思想

考虑以下数值结果为Y的正态-正态模型,其围绕未知均值μ的标准差为0.75:

相应的似然函数L(μ|y)和先验概率密度函数f(μ)对于y∈(−∞,∞)和μ∈(−∞,∞)是:

假设我们观察到一个结果Y=6.25。μ的后验模型是具有均值4和标准差0.6的正态分布:

如果我们无法指定μ的后验模型(假装一下),我们可以使用MCMC模拟来近似它。为了了解这是如何工作的,考虑一个潜在的N=5000次迭代的MCMC模拟结果。将这个马尔可夫链{μ(1),μ(2),…,μ(N)}视为μ的后验可能值范围的一次游览,你可以将自己看作是导游。左侧的轨迹图显示了游览路线或游览站点的顺序,μ(i)。右侧的直方图显示了你在每个μ区域中停留的相对时间。

我们可以通过简单地使用rnorm()从N(4,0.62)后验中直接抽样来实现这个算法。结果是来自后验的一个很好的独立样本,这反过来又产生了一个准确的后验近似:

set.seed(84375)
mc_tour <- data.frame(mu = rnorm(5000, mean = 4, sd = 0.6))
ggplot(mc_tour, aes(x = mu)) +
geom_histogram(aes(y = ..density..), color = "white", bins = 15) +
stat_function(fun = dnorm, args = list(4, 0.6), color = "blue")


点击标题查阅往期内容


R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例


左右滑动查看更多


01

02

03

04



Metropolis-Hastings算法

用于构建马尔可夫链{μ(1),μ(2),...,μ(N)}的Metropolis-Hastings算法在这里得到了规范。我们将始终乐意将我们移动到更合理的后验区域。例如,假设我们的马尔可夫游览当前位于位置“3”:

current <- 3

然后,要确定下一个游览站点,我们首先通过从Unif(current - 1, current + 1)模型中随机抽样来提出一个位置(步骤1):

set.seed(8)
proposal

重新查看图,我们观察到所提议的点(2.93)的(未归一化的)后验可能性略微低于当前点(3)。我们可以使用dnorm()计算这两个μ的未归一化后验可能性,即f(μ|y=6.25)∝f(μ)L(μ|y=6.25)。

r

prolaus <- dnorm(osal, 0, 1) * dnorm(6.25, proal, 0.75)
curaus <- dnorm(curnt, 0, 1) * dnorm(6.25, nt, 0.75)

由此可见,尽管不确定,接受并随后移动到所提议位置的概率α的相对高:

r

alpha <- min(1, prplaus / curr_plaus)
alpha

为了做出最终决定,我们设置了一个加权硬币,它以概率α(0.824)接受提议,并以概率1−α(0.176)拒绝提议。通过sample()函数随机抛掷这个硬币,我们接受了提议,意味着下一点是2.933:

r

nex_sop <- sape(c(roposl, curet),
size = 1, ob = c(alha, 1-apha))
net_top

这仅仅是对我们的正态后验进行一次Metropolis-Hastings算法迭代的无数可能结果之一。为了简化这个过程,我们将编写自己的R函数one_mh_iteration(),该函数实现从任何给定的当前点开始的单个Metropolis-Hastings迭代,并利用具有任意半宽度w的均匀提议模型。

我们首先指定one_mhiteation是两个参数的function():均匀分布的范围w和当前链值current

在函数内部,我们执行与上面相同的步骤,并return()三个信息:proposal、接受概率alphanext_stop

r

one_meration <- fntion(w, crret){
# 第一步:提议下一个链位置
prpsal <- runif(1, nt - w, max = crrent+ w)

# 第二步:决定是否移动到新位置
prop_plau <- dnorm(prpoal, 0, 1) * dnorm(625, proosl, 0.75)
curetplaus <- dnorm(cunt, 0, 1) * dnorm(6.25, urent, 0.75)
alpha <- min(1, propoalplaus / current_plaus)

# 返回结果
return(dta.fame(proposa, alph, next_stp))
}

让我们试一试。在种子为8的情况下从当前点3运行onemh_ieration()可以复制上面的结果:

r

set.seed(8)
one_h_itraton(w = 1, current = 3)


如果我们使用83这个种子,所提议的下一个点是2.018,对应的接受概率很低,只有0.017:

r

set.eed(83)
one_mh_itraton(w =1, crrent = 3)


这是有道理的。从图中可以看出,2.018的后验可能性远低于我们当前所在地3的后验可能性。虽然我们确实想要探索这样极端的值,但我们不想经常这样做。事实上,在我们投掷硬币时,提议被拒绝,并且旅游将再次访问位置3。

我们可以确认当所提议的下一个旅游站点(这里是3.978)的后验可能性大于我们当前位置时,接受概率为1,提议将自动接受:

r

set.seed(7)
onemh_ieratonw = 1, urrnt = 3)


实施Metropolis-Hastings

现在,我们需要一遍又一遍地重复上一个单个迭代的过程来构建一个由N(4,0.62)后验分布组成的Metropolis-Hastings。下面的mh_tour()函数可以构建一个给定长度N的Metropolis-Hastings,利用任何给定半宽度w的均匀提议模型:

r

mh_tour <- function(N, w){
# 1. 在位置3开始
curet <- 3

# 2. 初始化模拟
mu <- rep(0, N)

# 3. 模拟N个马尔科夫链停止
for(i in 1:N){
# 模拟一个迭代
sim <- onemh_itrationw = w,currnt crrent)

# 记录下一个位置
mu[i] <- si$xt_top

# 重置当前位置
current <- sim$nt_tp
}

# 4. 返回位置
retun(datfrae(tratio= c(:N,mu))
}

在调用此函数时:

  1. 在位置3处开始,这是一个基于我们对μ的先前了解而做出的相当任意的选择。

  2. 通过设置“空”向量来初始化模拟,我们最终将在其中存储N次停止的位置(mu)。

  3. 利用for循环,在1到N的每个停留点i中运行on_m_iteaion(),并将结果的next_stop存储在mu向量的第i个元素中。在关闭for循环之前,更新current停止以作为下一次迭代的起点。

  4. 返回具有迭代号和相应停留点mu的数据框。

要查看此函数的实际应用,请使用m_our()模拟长度为N = 5000的Markov链,利用半宽度w=1的均匀提议模型:

r

set.seed(84735)
mh_sulio_1 <- m_our(N = 5000, w = 1)

下面显示了结果的跟踪图和直方图。值得注意的是,产生了对N(4,0.62)后验分布的极其准确的近似。通过严格过程,我们利用了均匀分布的相关采样来近似正态分布。

ggplo= 20) + 
stat_fuctin(fun = dnorm,args = ist(4,0.6), color = "blue")

Beta-Binomial模型例子

让我们实现Metropolis-Hastings算法来处理一个Beta-Binomial模型,其中我们观察到在2次尝试中有1次成功,即 Y=1,n=2: 。

同样,假设我们只能将后验概率密度上定义到某些缺失的归一化常数,

下面的oneiertion()函数实现了该独立采样算法的单次迭代,从任何给定的当前值π开始,并对给定的a和b使用Beta(a,b)建议模型。在计算接受概率α时,请注意我们使用dbeta()来评估先验概率密度函数和建议概率密度函数,以及使用dbinom()来评估具有数据Y=1,n=2,π的二项式似然函数:

one_terton <- function(a, , curnt){
# 第 1 步:提出下一个链位置
proposal <- rbeta(1, a, b)

# 第 2 步:决定

popoal_plas <- deta(prposa, 2, 3) * dbno(1, 2, prosal)
proposlq <- dbeta(prpsal, a, b)
curentplus <- dbea(curet, 2, 3) * dbnom(1, 2, )
curnt_q <- dbeta(curent, a, b)

接下来,我们编写一个betbn_tour()函数,为任何Beta(a,b)建议模型构建一个N长度的Markov链遍历,利用one_iertion()来确定每个停止位置:

R

beai_tour <- fucton(N, a, b){
# 1. 位置0.5开始链
current <- 0.5

# 2. 初始化模拟
pi <- rp(0, N)

# 3. 模拟N次Markov链停止
for(i in 1:N){
# 模拟一次迭代
sim <- on_ieaion(a = a, b = b, crent = curent)

# 记录下一个位置
pi[i] <- simnet_sop

# 重置当前位置
current <- simnetstop
}
}

我们尝试不同调整的Beta(a,b)建议模型。在这里,为了简单起见,我们使用Beta(1,1),即Unif(0,1)的建议模型进行了5000步的Beta-Binomial后验分布遍历

R

set.seed(84735)
bebn_im <- betb_tour(N = 5000, a = 1, b = 1)

# 绘制结果
ggplot(beta

总结

本文建立了对基本的Metropolis-Hastings MCMC算法的概念理解。还实现了该算法来研究常见的正态-正态和Beta-Binomial模型。无论是在这些相对简单的单参数模型设置中,还是在更复杂的模型设置中,Metropolis-Hastings算法通过两个步骤之间的迭代产生了后验分布的近似样本:

  1. 通过从提议概率密度函数中抽取一个新的链位置来提出一个新的位置,这可能取决于当前位置。

  2. 确定是否接受提议。简单地说,我们是否接受提议取决于其后验可能性相对于当前位置的后验可能性有多有利。




点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例》。




点击标题查阅往期内容

R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像
MATLAB随机森林优化贝叶斯预测分析汽车燃油经济性
R语言中贝叶斯网络(BN)、动态贝叶斯网络、线性模型分析错颌畸形数据
使用贝叶斯层次模型进行空间数据分析
MCMC的rstan贝叶斯回归模型和标准线性回归模型比较
python贝叶斯随机过程:马尔可夫链Markov-Chain,MC和Metropolis-Hastings,MH采样算法可视化
Python贝叶斯推断Metropolis-Hastings(M-H)MCMC采样算法的实现
matlab贝叶斯隐马尔可夫hmm模型实现
贝叶斯线性回归和多元线性回归构建工资预测模型
Metropolis Hastings采样和贝叶斯泊松回归Poisson模型
贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据
R语言RSTAN MCMC:NUTS采样算法用LASSO 构建贝叶斯线性回归模型分析职业声望数据
R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性
PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像
贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析免疫球蛋白、前列腺癌数据
R语言JAGS贝叶斯回归模型分析博士生延期毕业完成论文时间
R语言Metropolis Hastings采样和贝叶斯泊松回归Poisson模型
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户
R语言贝叶斯MCMC:用rstan建立线性回归模型分析汽车数据和可视化诊断
R语言贝叶斯MCMC:GLM逻辑回归、Rstan线性回归、Metropolis Hastings与Gibbs采样算法实例
R语言贝叶斯Poisson泊松-正态分布模型分析职业足球比赛进球数
随机森林优化贝叶斯预测分析汽车燃油经济性
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病
R语言用Rcpp加速Metropolis-Hastings抽样估计贝叶斯逻辑回归模型的参数
R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归
Python贝叶斯回归分析住房负担能力数据集
R语言实现贝叶斯分位数回归、lasso和自适应lasso贝叶斯分位数回归分析
Python用PyMC3实现贝叶斯线性回归模型
R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型
R语言Gibbs抽样的贝叶斯简单线性回归仿真分析
R语言和STAN,JAGS:用RSTAN,RJAG建立贝叶斯多元线性回归预测选举数据
R语言基于copula的贝叶斯分层混合模型的诊断准确性研究
R语言贝叶斯线性回归和多元线性回归构建工资预测模型
R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例
R语言stan进行基于贝叶斯推断的回归模型
R语言中RStan贝叶斯层次模型分析示例
R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化
R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型
WinBUGS对多元随机波动率模型:贝叶斯估计与模型比较
R语言实现MCMC中的Metropolis–Hastings算法与吉布斯采样
R语言贝叶斯推断与MCMC:实现Metropolis-Hastings 采样算法示例
R语言使用Metropolis-Hastings采样算法自适应贝叶斯估计与可视化
视频:R语言中的Stan概率编程MCMC采样的贝叶斯模型
R语言MCMC:Metropolis-Hastings采样用于回归的贝叶斯估计



拓端数据部落
拓端(tecdat.cn)创立于2016年,提供专业的数据分析与挖掘服务,致力于充分挖掘数据价值。
 最新文章