釜庆大学李富强&Sung Heum Park最新Small:高效功能补偿层与空穴传输层集成提升钙钛矿太阳能电池性能与稳定性

百科   2025-01-07 23:55   北京  

在钙钛矿太阳能电池领域,如何改善空穴传输层(HTL)与钙钛矿吸收层之间的界面特性,一直是提升反式PSC性能的关键挑战之一。近日,韩国国立釜庆大学李富强&Sung Heum Park团队在这一领域取得了重要突破,其最新研究成果提出了一种高效的功能补偿层(FCL)设计,为钙钛矿太阳能电池的性能和稳定性带来了显著提升,相关成果发表于Small期刊。

研究团队采用一种基于苯并噻吩衍生物的新型功能补偿层,特别是5-(三氟甲基)-1-苯并噻吩-2-羧酸(TFMBTA),将其引入到MeO-2PACz HTL与钙钛矿吸收层之间。该功能补偿层通过改善HTL表面形貌、优化能级匹配,有效增强了电荷传输与空穴提取效率,同时提升了钙钛矿薄膜的沉积质量。此外,TFMBTA的功能基团对钙钛矿缺陷具有出色的钝化效果,大幅减少了HTL与钙钛矿层界面的非辐射复合损失。

实验结果显示,引入TFMBTA功能补偿层的MeO-2PACzPSC实现了23.85%的光电转换效率,开路电压、填充因子以及长期稳定性均得到显著提升。同样,在PEDOT:PSS HTL与钙钛矿层之间引入该功能补偿层,也表现出了效率和稳定性的同步增强,验证了功能补偿层在多种HTL上的通用性。

Figure 1. a) The structure of TFMBTA. b) Description of TFMBTA as FCL c) High-resolution XPS spectra of F 1s region before and after adsorption of TFMBTA. d) The In 3d XPS spectra of ITO surfaces with TFMBTA treatment, MeO-2PACz treatment, and MeO-2PACz/TFMBTA treatment, respectively. e) XPS spectra of C 1s for film of ITO/TFMBTA. f) XPS spectra of F 1s of TFMBTA‐treated films before and after solvent washing. g) XPS spectra of In 3d of TFMBTA‐treated films before and after solvent washing. h) FTIR spectrum of TFMBTA, MeO‐2PACz, and TFMBTA·MeO‐2PACz mixture.

Figure 2. SEM images of the a) MeO-2PACz and b) TFMBTA-treated films. 3D AFM images of c) MeO-2PACz and d) TFMBTA-treated MeO-2PACz films. e) The contact angles of water on the MeO-2PACz and TFMBTA-treated MeO-2PACz films. f) J-V curves of the hole-only devices to evaluate the hole transport ability of ITO/MeO-2PACz (with or without TFMBTA)/MoOx/Ag. g) Band alignment of the PSCs after TFMBTA treatment.

Figure 3. a) Schematic diagram of perovskite passivation by TFMBTA b) ESP result of the TFMBTA and TFMBA. Theoretical model of the interaction between C=O group and perovskite of c) TFMBTA and d) TFMBA and the calculated binding energy and charge density difference.

Figure 4. a) FTIR spectra of TFMBTA powder and TFMBTA·PbI2 blend. b) FTIR spectra of TFMBTA powder and TFMBTA·FAI blend at 900–1200 cm-1. XPS spectra of c) Pb 4f for pristine and TFMBTA-treated perovskite films. d) 13C NMR spectra of TFMBTA and TFMBTA·PbI2 mixture. e) 19F and f) 1H NMR spectra of TFMBTA and TFMBTA·FAI mixture.

Figure 5.a) XRD patterns of pristine and TFMBTA-treated perovskite films. SEM images of b) pristine and c) TFMBTA-treated perovskite films. d) Dark J-V characteristics of hole-only SCLC devices with ITO/MeO-2PACz (with or without TFMBTA)/perovskite/spiro-OMeTAD/Ag configurations. e) Steady-state PL spectra and f) time-resolved PL decay spectra of ITO/MeO-2PACz (with and without TFMBTA)/perovskite.

Figure 6. a) Schematic of the SAM‐based inverted PSCs structure. b) J-V curves of the champion devices without and with TFMBTA modification. c) IPCE spectra and integrated photocurrent densities of the devices. d) Voc dependence on the light intensity. e) Dark J-V curves of PSCs. f) Stability testing of corresponding PSCs devices at room temperature in a nitrogen environment.

Figure 7.a) Schematic of PEDOT:PSS-based inverted PSCs structure. b) J-V curves of the champion devices without and with TFMBTA modification. c) Cut-off energy (Ecut-off) of PEDOT:PSS films without and with TFMBTA. d) J-V curves of ITO/PEDOT:PSS/(with or without TFMBTA)/MoOx/Ag. e) Dark J-V curves of PSCs. f) Stability testing of corresponding PSCs devices at room temperature in a nitrogen environment.

原文链接:https://doi.org/10.1002/smll.202410369

钙钛矿太阳能电池
本公众号为研究钙钛矿太阳能电池的老师和同学们提供本方向的最新进展,提供最尖端的科研技术,带动中国在新型太阳能电池的研发达到国际领先水平!
 最新文章