将 ScienceAI 设为星标
第一时间掌握
新鲜的 AI for Science 资讯
编辑 | X_X
2024 年 10 月 8 日,诺贝尔物理学奖授予了两位 AI 领域的科学家,以表彰他们的发现。
诺贝尔奖评审团表示,被誉为「人工智能教父」的英裔加拿大科学家 Geoffrey Hinton 和美国物理学家 John Hopfield 因「利用人工神经网络实现机器学习的发现和发明」而获得该奖。
这一切意味着什么?
Geoffrey Hinton 和 John Hopfield 的研究主要围绕人工神经网络(ANN)的发展,这是一种模仿人脑神经元连接方式的计算模型。
Hinton 在深度学习领域的贡献尤其突出,他提出的反向传播算法使得训练深层神经网络成为可能。
Hopfield 则以其 Hopfield 网络而闻名,这是一种具有记忆存储能力的递归神经网络。
两者的工作为机器学习提供了理论基础,使得计算机能够从数据中自我学习和优化,从而在图像识别、自然语言处理等多个领域取得显著进展。
这些研究不仅推动了人工智能的发展,还间接对其他学科产生了深远影响。例如,在物理学中,机器学习技术被应用于数据分析、模型构建和实验设计等领域,帮助科学家们处理大规模数据集,发现新的物理现象。
这种跨学科的结合体现了现代科学研究的趋势,即融合不同领域的知识和技术,从而解决复杂问题。
对科学的影响是什么?
AI 科学家获得诺奖这件事,说明人工智能在科学研究中的重要地位日益凸显,表明 AI 技术已不仅仅是工具,而是推动科学发现和创新的核心驱动力之一。
「本次奖项,不难发现,人工智能其实和物理、生物、化学有千丝万缕的联系。当你把非常复杂的数据『扔』给神经网络,它能一层层提取出有效的关键信息,这其中涉及信息的流动,而在高能物理领域也存在类似现象,二者本质上都是提取有效信息的过程。这体现出学科交叉的特性。」北京理工大学预聘助理教授许坤表示。
这一奖项的颁发可能会激励更多科学家在 AI 研究领域投入精力,推动更高效的计算方法和算法的开发。
科学的进步是一个永无止境的探索之旅,它始于大胆的假设,终于严谨的验证。
这个过程中,科学家们首先提出理论假设,随后设计实验框架,收集关键数据,并最终通过实验来验证这些假设的真实性。这不仅要求科学家们进行深入的思考和创新,还涉及到大量的计算、模拟和逻辑证明。
在科学发现的过程中,人工智能的应用潜力无限,几乎在每一个环节都能发挥其独特的作用。
「今年的物理学奖显然是对神经网络或者机器学习方向的肯定,也恰恰说明物理学的边界正在开放拓展,容纳更多理念和工具。这确实是值得赞叹的。」江俊表示。
物理奖颁给 AI 领域这件事,一方面,物理学作为基础科学的原理,其对其他学科领域的深远影响是显而易见的;另一方面,这标志着一种新的认识论的诞生。
传统上,物理学的严谨推理和数学公式构成了其理论体系的基石,这些公式被视作物理学最根本的逻辑表达。然而,当前物理学界开始接纳并认可机器学习这一尚未完全揭开其神秘面纱的「黑盒」领域(尽管其预测结果可能具有发散性、不严谨性和不确定性),这表明我们对物理学的理解已经达到了一个新的维度。
我们不再局限于仅通过数学公式来刻画物理现象,而是开始接受基于语言描述的模糊性,这种描述同样能够精确地反映物理学的规律。
人工智能 × [ 生物 神经科学 数学 物理 化学 材料 ]
「ScienceAI」关注人工智能与其他前沿技术及基础科学的交叉研究与融合发展。
欢迎关注标星,并点击右下角点赞和在看。
点击阅读原文,加入专业从业者社区,以获得更多交流合作机会及服务。