利用主动机器学习和量子化学模拟探索和设计碳点基长余辉材料
针对碳点基长余辉材料和生物炭等结构不清的特点,团队开发了精准预测模型,并结合量子化学计算进行深入解释。研究引入了ChatGPT和贝叶斯算法,旨在设计更有效的实验方案和材料。研究成果“Exploration and Design of Carbon Dots-Based Long Afterglow Materials Using Active Machine Learning and Quantum Chemical Simulations”在国际知名期刊ACS Nano在线发表。材料与能源学院在读硕士研究生杨宏伟、冉准和罗艺盟为共同第一作者,肖勇、崔江虎和刘应亮为论文的共同通讯作者。
本研究利用机器学习的非线性拟合能力探索碳点的余辉特性,采用XGBoost算法精准预测最佳激发波长、发射波长和余辉寿命。通过贝叶斯优化,筛选并通过一步微波法合成了余辉寿命3.43秒的碳点基余辉材料。结合量子化学计算与实验数据,揭示了碳点及其前体之间的构效关系。研究表明,碳点继承了前驱体的官能团特性,并保留了空穴和电子特性。基于机器学习模型,加快了碳点基长余辉材料的开发并简单揭示了前驱体与其之间的构效关系。未来,构建更广泛的数据集将进一步提高模型的适应性与预测准确性。
智能方法:集成ChatGPT,制定生物炭固定土壤镉的实验方案
团队在国际知名杂志Separation and Purification Technology上发表了题为“An intelligent approach: Integrating ChatGPT for experiment planning in biochar immobilization of soil cadmium”的研究论文。材料与能源学院在读硕士研究生杨宏伟为第一作者,肖勇和崔江虎为共同通讯作者。
本研究提出了一种多人工智能技术集成的策略,以确定生物炭特性和实验条件,从而在特定土壤条件下实现最大固定率。团队开发了六个可解释的树模型,其中LSBoost模型表现最佳,还开发了一个图形用户界面,可通过该界面手动输入土壤特性并应用贝叶斯算法反推在该土壤条件下哪种生物炭条件可以实现最大固定率。本研究利用这些条件与OpenAI链接,并利用ChatGPT获取详细的实验计划,这些计划将显示在图形用户界面上,供研究人员参考。
革新生物炭合成,增强重金属吸附:利用机器学习和贝叶斯优化技术
本研究提出了一种基于贝叶斯优化算法的生物炭设计策略,旨在自动优化机器学习模型的超参数,并探索未被充分研究的制备条件。通过贝叶斯算法进行超参数搜索,团队成功创建了随机森林、支持向量回归和反向传播模型,表现出优异的性能,其中随机森林模型的表现出(R²= 0.998;RMSE = 0.027)。根据贝叶斯搜索的结果,超过80%的特征组合均超过了重金属吸附的上限,且在热解温度为420°C时生产的介孔结构生物炭展现出更强的重金属吸附能力。这项研究提出了一种快速开发机器学习模型的新方法,并通过反向推理指导生物炭的制备,以提高其吸附性能。
上述研究得到国家自然科学基金面上项目(42007116, 12174119, 52172142)的资助。