光伏领域广泛使用的晶硅具有单一组分的特点,由小面积单晶器件组装的单晶硅电池在组件放大过程中效率基本保持不变。而具有大面积模组整体一次性制备优势的多元组分薄膜太阳能电池(如铜铟镓硒 (CIGS)),长期面临组件成品率低和大面积效率低的困扰。背后的关键科学问题是多元组分太阳能电池的大面积制备难以避免局部杂质、组分偏析以及结构缺陷的累积效应,影响整体性能及成品率。作为未来光伏重要方向的钙钛矿太阳能电池也同样面临着大面积模组效率与成品率降低的难题。其中的关键原因是多元组分的钙钛矿在大面积制备的结晶过程中会出现多种类型的杂质和组分偏析,如黄相非钙钛矿、碘化铅及表界面缺陷等。该类问题在小面积器件上影响较小,且可以通过多种方法解决或避免。但是在大面积制备中,这些杂质的累积效应严重制约模组的性能提升,并且还会影响钙钛矿太阳能电池的运行稳定性,成为产业化的关键挑战之一。
图1 基于2D CHEA2PbI4的杂质修复界面工程
赵一新教授团队长期围绕钙钛矿太阳能电池,深耕和引领高效稳定钙钛矿的化学创制研究。为解决上述杂质累积效应影响大面积器件性能的问题,赵一新团队报道了一种基于环己烯基乙胺盐的低维钙钛CHEA2PbI4的新型杂质修复策略。不同于导电性欠佳的传统二维(2D)钙钛矿,CHEA2PbI4钙钛矿的导电性能优异。通过CHEAI界面工程处理,三维钙钛矿薄膜中的碘化铅、黄相非钙钛矿等杂质均可以完全转化为性能优秀的2D CHEA2PbI4钙钛矿。对微观结构的研究表明,CHEAI处理可以在钙钛矿薄膜表面和晶界形成有效钝化缺陷的2D CHEA2PbI4覆盖层,对钙钛矿薄膜稳定化提供优良的保障,并为高效的电荷传输提供了通道,小面积器件中的填充因子(FF)可以达到0.86的高水平。更重要的是,基于CHEAI的杂质修复界面工程具有工艺容忍性好、操作窗口宽的优势,非常适合大面积器件制备的工艺扩展,成功实现了大面积薄膜的杂质修复。
图2 杂质修复后的钙钛矿薄膜及大面积高效率模组
自2019年以来,赵一新团队和宁德时代开展了钙钛矿太阳能电池的一系列合作,致力于解决钙钛矿太阳能电池产业化过程中面临的关键科学难题。上述杂质修复的界面工程成功应用于30 cm × 30 cm大面积模组,获得了文献报道的国际领先的22.80%开口面积效率(第三方认证效率22.46%)。此项工作解决了大面积多元组分钙钛矿薄膜面临的杂质多、导电性差、均一性差等难题,为进一步提升大面积钙钛矿光伏模组性能提供了重要思路。该研究得到国家自然科学基金、上海市自然科学基金、上海市浦江人才计划、青山科技奖等项目的资助。
来 源 :上海交通大学官微、环境科学与工程学院