R语言向量自回归模型(VAR)及其实现

科技   科技互联网   2025-01-24 19:24   浙江  

原文链接:http://tecdat.cn/?p=6916


澳大利亚在2008 - 2009年全球金融危机期间发生了这种情况。澳大利亚政府发布了一揽子刺激计划,其中包括2008年12的现金支付,恰逢圣诞节。因此,零售商报告销售强劲,经济受到刺激。因此,收入增加了点击文末“阅读原文”获取完整代码数据

相关视频


VAR面临的批评是他们是理论上的; 也就是说,它们不是建立在一些经济学理论的基础上,这些理论强加了方程式的理论结构。假设每个变量都影响系统中的其他变量,这使得估计系数的直接解释变得困难。尽管如此,VAR在几种情况下都很有用:

  1. 预测相关变量的集合,不需要明确的解释;

  2. 测试一个变量是否有助于预测另一个变量(格兰杰因果关系检验的基础);

  3. 脉冲响应分析,其中分析了一个变量对另一个变量的突然但暂时的变化的响应;

  4. 预测误差方差分解,其中每个变量的预测方差的比例归因于其他变量的影响。

示例:用于预测美国消费的VAR模型

 
VARselect(uschange[,1:2], lag.max=8,
type="const")[["selection"]]
#> AIC(n) HQ(n) SC(n) FPE(n)
#> 5 1 1 5

 


点击标题查阅往期内容


【视频】向量自回归VAR数学原理及R软件经济数据脉冲响应分析实例


左右滑动查看更多


01

02

03

04



R输出显示每个信息标准选择的滞后期。由AIC选择的VAR(5)与BIC选择的VAR(1)之间存在很大差异。因此,我们首先拟合由BIC选择的VAR(1)。

var1 <- VAR(uschange[,1:2], p=1, type="const")
serial.test(var1, lags.pt=10, type="PT.asymptotic")
var2 <- VAR(uschange[,1:2], p=2, type="const")
serial.test(var2, lags.pt=10, type="PT.asymptotic")

 

与单变量ARIMA方法类似,我们使用Portmanteau测试残差是不相关的。VAR(1)和VAR(2)都具有一些残差序列相关性,因此我们拟合VAR(3)。

var3 <- VAR(uschange[,1:2], p=3, type="const")
serial.test(var3, lags.pt=10, type="PT.asymptotic")
#>
#> Portmanteau Test (asymptotic)
#>
#> data: Residuals of VAR object var3
#> Chi-squared = 34, df = 28, p-value = 0.2

 

该模型的残差通过了序列相关性检验。VAR(3)生成的预测如图所示。

forecast(var3) %>%
autoplot() + xlab("Year")

 

 





本文中分析的数据、代码分享到会员群,扫描下面二维码即可加群! 



点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《R语言向量自回归模型(VAR)及其实现》。




点击标题查阅往期内容

R语言估计时变VAR模型时间序列的实证研究分析案例
向量自回归VAR的迭代多元预测估计 GDP 增长率时间序列|数据分享
ARIMA、GARCH 和 VAR模型估计、预测ts 和 xts格式时间序列
向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列
Matlab创建向量自回归(VAR)模型分析消费者价格指数 (CPI) 和失业率时间序列
Stata广义矩量法GMM面板向量自回归 VAR模型选择、估计、Granger因果检验分析投资、收入和消费数据
R语言时变向量自回归(TV-VAR)模型分析时间序列和可视化
R语言用向量自回归(VAR)进行经济数据脉冲响应研究分析
R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列
R语言VAR模型的不同类型的脉冲响应分析
R语言随机搜索变量选择SSVS估计贝叶斯向量自回归(BVAR)模型
R语言时变参数VAR随机模型
R语言估计时变VAR模型时间序列的实证研究分析案例
R语言向量自回归模型(VAR)及其实现
R语言实现向量自回归VAR模型
R语言估计时变VAR模型时间序列的实证研究分析案例
Python和R用EWMA,ARIMA模型预测时间序列
R语言用LASSO,adaptive LASSO预测通货膨胀时间序列
Python中的ARIMA模型、SARIMA模型和SARIMAX模型对时间序列预测
R语言arima,向量自回归(VAR),周期自回归(PAR)模型分析温度时间序列
【视频】Python和R语言使用指数加权平均(EWMA),ARIMA自回归移动平均模型预测时间序列



拓端数据部落
拓端(tecdat.cn)创立于2016年,提供专业的数据分析与挖掘服务,致力于充分挖掘数据价值。
 最新文章