一行Python代码实现数据清洗的18种方法

文摘   2024-11-18 20:29   江苏  

数据清洗可能是你们遇到的第一个大挑战,但别担心,Python的魔力在于能用简洁的代码解决复杂问题。今天,我们就来学习如何用一行代码完成数据清洗的十八个小绝招。准备好,让我们一起化繁为简,成为数据清洗的高手!

1. 去除字符串两边空格

data = "   Hello World!   "
cleaned_data = data.strip()  # 神奇的一行,左右空格拜拜

  • 解读strip()方法去掉字符串首尾的空白字符,简单高效。

2. 转换数据类型

num_str = "123"
num_int = int(num_str)  # 字符串转整数,就是这么直接

  • 注意:转换时要确保数据格式正确,否则会报错。

3. 大小写转换

text = "Python is Awesome"
lower_text = text.lower()  # 全部变小写,便于统一处理
upper_text = text.upper()  # 或者全部大写,随你心情

4. 移除列表中的重复元素

my_list = [122344]
unique_list = list(set(my_list))  # 集合特性,去重无压力

  • 小贴士:这招虽好,但改变了原列表顺序哦。

5. 快速统计元素出现次数

from collections import Counter
data = ['apple''banana''apple''orange']
counts = dict(Counter(data))  # 想要知道谁最受欢迎?

  • 解读Counter是统计神器,轻松获取频率。

6. 字符串分割成列表

sentence = "Hello world"
words = sentence.split(" ")  # 分割符默认为空格,一句话变单词列表

7. 列表合并

list1 = [123]
list2 = [456]
merged_list = list1 + list2  # 合并列表,就这么简单

8. 数据填充

my_list = [12]
filled_list = my_list * 3  # 重复三次,快速填充列表

9. 提取日期时间

from datetime import datetime
date_str = "2023-04-01"
date_obj = datetime.strptime(date_str, "%Y-%m-%d")  # 日期字符串变对象

  • 关键点%Y-%m-%d是日期格式,按需调整。

10. 字符串替换

old_string = "Python is fun."
new_string = old_string.replace("fun""awesome")  # 改头换面,一言既出

11. 快速排序

numbers = [52915]
sorted_numbers = sorted(numbers)  # 自然排序,升序默认

  • 进阶reverse=True可降序排列。

12. 提取数字

mixed_str = "The year is 2023"
nums = ''.join(filter(str.isdigit, mixed_str))  # 只留下数字,其余走开

  • 解密filter函数配合isdigit,只保留数字字符。

13. 空值处理(假设是列表)

data_list = [None12None3]
filtered_list = [x for x in data_list if x is not None]  # 拒绝空值,干净利落

  • 语法糖:列表推导式,简洁优雅。

14. 字典键值对互换

my_dict = {"key1""value1""key2""value2"}
swapped_dict = {v: k for k, v in my_dict.items()}  # 翻转乾坤,键变值,值变键

15. 平均值计算

numbers = [10203040]
average = sum(numbers) / len(numbers)  # 平均数,一步到位

16. 字符串分组

s = "abcdef"
grouped = [s[i:i+2for i in range(0, len(s), 2)]  # 每两个一组,分割有道

  • 应用:适用于任何需要分组的场景。

17. 数据标准化

import numpy as np
data = np.array([123])
normalized_data = (data - data.mean()) / data.std()  # 数学之美,标准分布

  • 背景:数据分析必备,让数据符合标准正态分布。

18. 数据过滤(基于条件)

data = [12345]
even_numbers = [x for x in data if x % 2 == 0]  # 只留偶数,排除异己

  • 技巧:列表推导结合条件判断,高效筛选。

进阶实践与技巧

既然你已经掌握了基础的十八种方法,接下来让我们深入一些,探讨如何将这些技巧结合起来,解决更复杂的数据清洗问题,并分享一些实战中的小技巧。

1. 复杂字符串处理:正则表达式

正则表达式是数据清洗中不可或缺的工具,虽然严格来说可能超过一行,但它能高效地处理模式匹配和替换。

import re
text = "Email: example@email.com Phone: 123-456-7890"
emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', text)
phones = re.findall(r'\b\d{3}-\d{3}-\d{4}\b', text)

这段代码分别提取了文本中的电子邮件和电话号码,展示了正则表达式的强大。

2. Pandas库的魔法

对于数据分析和清洗,Pandas是不二之选。虽然Pandas的命令通常不止一行,但其高效性和简洁性值得学习。

import pandas as pd
df = pd.read_csv('data.csv')
# 删除含有缺失值的行
df_clean = df.dropna()
# 替换特定值
df['column_name'] = df['column_name'].replace('old_value''new_value')

  • 注意:Pandas虽然强大,但对于初学者可能需要更多时间来熟悉。

3. 错误处理和日志记录

在处理大量数据时,错误几乎是不可避免的。学会用try-except结构捕获异常,并使用logging记录日志,可以大大提升调试效率。

import logging
logging.basicConfig(level=logging.INFO)
try:
    result = some_function_that_might_fail()
    logging.info(f"成功执行!结果:{result}")
except Exception as e:
    logging.error(f"执行失败:{e}")

这样,即使出现问题,也能迅速定位。

4. 批量操作与函数封装

将常用的数据清洗步骤封装成函数,可以大大提高代码的复用性和可读性。

def clean_phone(phone):
    """移除电话号码中的非数字字符"""
    return ''.join(c for c in phone if c.isdigit())

phone_numbers = ['123-456-7890''(555) 555-5555']
cleaned_numbers = [clean_phone(phone) for phone in phone_numbers]

通过定义clean_phone函数,我们可以轻松地清理一批电话号码。

实战建议:


  • 分步进行:不要试图一次性完成所有清洗任务,分步骤处理,逐步优化。
  • 测试数据:在实际数据上测试你的清洗逻辑前,先用小样本或模拟数据验证代码的正确性。
  • 文档和注释:即使是简单的数据清洗脚本,良好的注释也能为未来的自己或其他开发者提供巨大帮助。

好了,今天的分享就到这里了,我们下期见。如果本文对你有帮助,请动动你可爱的小手指点赞、转发、在看吧!

付费合集推荐

Python编程基础

Python办公自动化-Excel

微信公众号批量上传发布系统

文末福利

公众号消息窗口回复“编程资料”,获取Python编程、人工智能、爬虫等100+本精品电子书。

精品系统

微信公众号批量上传发布系统

关注我👇,精彩不再错过

手把手PythonAI编程
分享与人工智能和python编程语言相关的笔记和项目经历。
 最新文章