分析电路中各元件的作用;
解放大电路的放大原理;
能分析计算电路的静态工作点;
理解静态工作点的设置目的和方法。
以上四项中,最后一项较为重要。
R1、R2为三极管V1的直流偏置电阻。什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。
在电路的工作要求中,第一条件是要求要稳定。所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就像是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作 状态:“载止、饱和、放大”就由直流偏置决定。在图1中,也就是由R1、R2来决定了。
首先,我们要知道如何判别三极管的三种工作状态。简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC。则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。
若Uce接近于0V,则三极管工作于饱和状态,何谓饱和状态?就是说:Ic电流达到了最大值,就算Ib增大,它也不能再增大了。
以上两种状态我们一般称为开关状态。除这两种外,第三种状态就是放大状态,一般测Uce接近于电源电压的一半。若测Uce偏向VCC,则三极管趋向于载止状态,若测Uce偏向0V,则三极管趋向于饱和状态。
同理,当输入信号减小时,则Ib减小,Ic电流减小。则电阻R2的电压U2=Ic×R2会随之减小,Uce=VCC-U2,会变大。在输入信减小时,Uce最大变化是从1/2的VCC变化到VCC。这样,在输入信号一定范围内发生正负变化时,Uce以1/2VCC为准的话就有一个对称的正负变化范围,所以一般图1静态工作点的设置为Uce接近于电源电压的一半。
要把Uce设计成接近于电源电压的一半,这是我们的目的,但如何才能把Uce设计成接近于电源电压的一半?这就是看我们的手段了。
这里要先知道几个东西,第一个是我们常说的Ic、Ib,它们是三极管的集电极电流和基极电流,它们有一个关系是Ic=β×Ib。但我们初学的时候,老师很明显的没有告诉我们,Ic、Ib是多大才合适?这个问题比较难答,因为牵涉的东西比较的多。但一般来说,对于小功率管,一般设Ic在零点几毫安到几毫安中功率管则在几毫安到几十毫安,大功率管则在几十毫安到几安。
在图1中,设Ic为2mA,则电阻R2的阻值就可以由R=U/I来计算。VCC为12V,则1/2VCC为6V,R2的阻值为6V/2mA,为3KΩ。Ic设定为2毫安,则Ib可由Ib=Ic/β推出,关健是β的取值了。β一般理论取值100,则Ib=2mA/100=20#A,则R1=(VCC-0.7V)/Ib=11.3V/20#A=56.5KΩ。但实际上,小功率管的β值远不止100,在150到400之间,或者更高。所以若按上面计算来做,电路是有可能处于饱和状态的。
一般R4取100Ω,R3为2.9KΩ,实际上R3我们一般直取2.7KΩ,因为E24系列电阻中没有2.9KΩ,取值2.7KΩ与2.9KΩ没什么大的区别。因为R2两端的电压等于Ube+UR4,即0.7V+100Ω×2mA=0.9V。
在上面的分析计算中,多次提出假设什么的,这在实际应用中是必要的,很多时候需要一个参考值来给我们计算。但往往却没有,这里面一是我们对各种器件不熟悉,二是忘记了一件事,我们自己才是用电路的人,一些数据可以自己设定,这样可以少走弯路。
免责声明:本文系网络转载,版权归原作者所有。如有问题,请联系删除,谢谢!