点击蓝字
关注我们
关注并星标
从此不迷路
公众号ID|计算机视觉研究院
学习群|扫码在主页获取加入方式
源代码|关注回复“STAC”获取
论文:https://arxiv.org/pdf/2005.04757.pdf
计算机视觉研究院专栏
Column of Computer Vision Institute
1
简要
2
背景
引用《论文解读】【半监督学习】【Google教你水论文】A Simple Semi-Supervised Learning Framework for Object Detection》
https://www.lbyxlz.com/%e3%80%90%e8%ae%ba%e6%96%87%e8%a7%a3%e8%af%bb%e3%80%91%e3%80%90%e5%8d%8a%e7%9b%91%e7%9d%a3%e5%ad%a6%e4%b9%a0%e3%80%91%e3%80%90google%e6%95%99%e4%bd%a0%e6%b0%b4%e8%ae%ba%e6%96%87%e3%80%91a-simple-semi
半监督学习在训练阶段结合了大量未标记的数据和少量标签数据。与使用所有标签数据的模型相比,使用训练集的训练模型在训练时可以更为准确,而且训练成本更低。
为什么使用未标记数据有时可以帮助模型更准确,关于这一点的体会就是:即使你不知道答案,但你也可以通过学习来知晓,有关可能的值是多少以及特定值出现的频率。
3
新框架
STAC流程:
用已有的标签图像训练一个教师模型(teacher model)用来生成伪标签(有点知识蒸馏那味了,这个模型是Faster-RCNN)。
用训练好的模型推理剩余的未标注的图像,生成伪标签。
对未标注的数据进行增强,同步伪标签(图像旋转的时候也要将标签的坐标同步呀,不然不都错位了吗)。
使用半监督Loss来训练检测器
训练教师模型
研究者在Faster RCNN上进行我们的实验,因为它已成为最具代表性的检测框架之一。Faster RCNN具有分类器(CLS)和区域提议网络(RPN)在共享骨干网之上。每个Head有两个模块,分别是区域分类器和边界框回归器。为简化起见, 研究者提出监督和无监督的RPN的损失。监督损失的写法如下:
consistency-based SSL方法(例如UDA [58]或FixMatch [49])的关键因素是强大的数据增强。而有监督和半监督的扩充策略在图像分类领域已被广泛研究,没有太多论文对物体检测进行研究。我们使用最近提出的RandAugment以及Cutout [10],如下:
基于一致性的SSL方法(例如UDA和FixMatch)成功的关键因素是强大的数据增强方法。虽然监督和半监督图像分类的增强策略已被广泛研究,但尚未为目标检测做出太多努力。 研究者使用最近提出的增强搜索空间(例如,框级变换)和Cutout扩展了用于目标检测的RandAugment。 研究者探索了转换操作的不同变体并确定了一组有效的组合。每个操作都有一个大小,决定了强度的增强程度。
4
实验及可视化
END
转载请联系本公众号获得授权
计算机视觉研究院学习群等你加入!
ABOUT
计算机视觉研究院
往期推荐
往期推荐
🔗
目标检测干货 | 多级特征重复使用大幅度提升检测精度(文末附论文下载) 目标检测新框架CBNet | 多Backbone网络结构用于目标检测(附源码下载) Sparse R-CNN:稀疏框架,端到端的目标检测(附源码) 利用TRansformer进行端到端的目标检测及跟踪(附源代码) 细粒度特征提取和定位用于目标检测(附论文下载) 特别小的目标检测识别(附论文下载) 目标检测 | 基于统计自适应线性回归的目标尺寸预测 目标检测干货 | 多级特征重复使用大幅度提升检测精度(文末附论文下载) SSD7-FFAM | 对嵌入式友好的目标检测网络,为幼儿园儿童的安全保驾护航 目标检测新方式 | class-agnostic检测器用于目标检测(附论文下载链接) 干货 | 利用手持摄像机图像通过卷积神经网络实时进行水稻检测(致敬袁老)