点云视频(实时点云流)的分析是一个挑战性的任务,该任务要求算法能够处理和理解空间和时间维度上的数据。点云视频由一系列包含空间位置信息的点云帧组成,这些帧不仅记录了场景的空间结构,还记录了随时间变化的动态信息。这种数据形式在自动驾驶、机器人交互、虚拟现实等多个领域都有重要应用。然而,如何有效地从这些复杂的数据中提取有用的时空特征,对于提高动作识别、语义分割等任务的性能至关重要。传统的处理方法,如基于网格或体素的方法,虽然在某些情况下有效,但这些方法在处理大规模点云数据时通常效率低下,并且难以捕捉长距离的时空关系。近年来,深度学习的方法,尤其是基于自注意力机制的变换器 (Transformer) 架构,因其在处理序列数据中的长距离依赖方面的优势,适用于时空点云数据处理。
本次导读介绍Point 4D Transformer (P4Transformer),P4Transformer通过自注意力机制有效地捕捉点云数据中的时空依赖。具体来说,P4Transformer包括一个4维点卷积层,用于嵌入点云视频中呈现的时空局部结构,以及一个Transformer层,通过对嵌入的局部特征执行自注意力来捕获整个视频的外观和运动信息。以注意力权重的方式,将相关或相似的局部区域融合合并,而不是通过显式跟踪合并。
本工作主要贡献如下:
受原有的3维点卷积层启发,提出了4维点卷积层;
提出了一种基于Transformer的神经网络架构,捕捉点云视频中的时空连续性。
Point 4D Transformer网络由4维点卷积和Transformer两个主要结构组成,4维点卷积对点云视频中的局部时空结构进行编码,而Transformer用于捕获整个点云视频的整体运动信息。
Q: P4Transformer目前对于每一个场景都需要训练一个网络,如何改进P4Transformer使其能够更加泛化,减少网络对于特定数据的依赖?
-- End--
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. Conference and Workshop on Neural Information Processing Systems (NeurIPS). 1097-1105, 2012.
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. Conference on Computer Vision and Pattern Recognition (CVPR). 770-778, 2016.
[3] Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torre sani, and Manohar Paluri. Learning spatiotemporal features with 3D convolutional networks. International Conference on Computer Vision (ICCV). 4489-4497, 2015.
[4] João Carreira and Andrew Zisserman. Quo vadis, action recognition? A new model and the kinetics dataset. Conference on Computer Vision and Pattern Recognition (CVPR). 6299-6308, 2017.
[5] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? Conference on Computer Vision and Pattern Recognition (CVPR). 6546-6555, 2018.
[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Conference and Workshop on Neural Information Processing Systems (NeurIPS). 6000-6010, 2017.
[7] Wanqing Li, Zhengyou Zhang, and Zicheng Liu. Action recognition based on a bag of 3d points. Conference on Computer Vision and Pattern Recognition (CVPR). 9-14, 2010.
[8] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. NTU RGB+D: A large scale dataset for 3D human activity analysis. Conference on Computer Vision and Pattern Recognition (CVPR). 1010-1019, 2016.
[9] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-Yu Duan, and Alex C. Kot. NTU RGB+D 120: A largescale benchmark for 3D human activity understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). 42(10), 2684-2701, 2020.
[10] Christopher B. Choy, JunYoung Gwak, and Silvio Savarese. 4D spatio-temporal convnets: Minkowski convolutional neural networks. Conference on Computer Vision and Pattern Recognition (CVPR). 3075-3084, 2019.