基于深度学习和l1正则的压气机叶栅实验数据驱动的流场预测

学术   2024-10-25 09:25   北京  

点击上方蓝色文·字关注我们吧




Journal of Thermal Science

Title: Experimental Data-Driven Flow Field Prediction for Compressor Cascade based on Deep Learning and ℓ1 Regularization

题目:基于深度学习和l1正则的压气机叶栅实验数据驱动的流场预测

Authors: LIU Tantao, GAO Limin, LI Ruiyu

作者:刘锬韬,高丽敏,李瑞宇

单位:西北工业大学动力与能源学院,西安交通大学航空航天学院

Journal of Thermal Science, 2024, 33(5): 1867-1882.

👇点击下载全文

Experimental Data-Driven Flow Field Prediction for Compressor Cascade based on Deep Learning and ℓ1 Regularization.pdf

摘要



Abstract: For complex flows in compressors containing flow separations and adverse pressure gradients, the numerical simulation results based on Reynolds-averaged Navier-Stokes (RANS) models often deviate from experimental measurements more or less. To improve the prediction accuracy and reduce the difference between the RANS prediction results and experimental measurements, an experimental data-driven flow field prediction method based on deep learning and ℓ1 regularization is proposed and applied to a compressor cascade flow field. The inlet boundary conditions and turbulence model parameters are calibrated to obtain the high-fidelity flow fields. The Saplart-Allmaras and SST turbulence models are used independently for mutual validation. The contributions of key modified parameters are also analyzed via sensitivity analysis. The results show that the prediction error can be reduced by nearly 70% based on the proposed algorithm. The flow fields predicted by the two calibrated turbulence models are almost the same and nearly independent of the turbulence models. The corrections of the inlet boundary conditions reduce the error in the first half of the chord. The turbulence model calibrations fix the overprediction of flow separation on the suction surface near the tail edge.

摘要:压气机中的流动十分复杂,其中包含流动分离和逆压力梯度,基于雷诺平均湍流模型的数值仿真流场通常会或多或少偏离实验测量结果。为了提高流场预测精度,减少数值仿真与实验测量之间的偏差,提出了一种基于深度神经学习和l1正则的实验数据驱动的压气机流场预测方法,为获得高可信度的流场,校正了进口边界条件和湍流模型参数。独立使用了S-A和SST湍流模型性相互验证预测结果,并使用敏感性分析方法获得关键参数的贡献。结果显示本文提出的算法可以减小约70%的预测偏差,两种湍流模型预测出的流场几乎相同即预测结果基本独立于湍流模型。进口边界条件的修正主要减小了前半弦长的预测偏差,而湍流模型的修正主要减小了吸力面尾缘流动分离的过渡预测。

(👆下滑看摘要,点击文章顶部题目链接看文章全文)




图片展示


F1


F2


F3


F4


F5


F6


F7


F8


F9


F10


F11


F12


F13


F14


F15


F16

引用格式

LIU Tantao, GAO Limin, LI Ruiyu, Experimental Data-Driven Flow Field Prediction for Compressor Cascade based on Deep Learning and ℓ1 Regularization, Journal of Thermal Science, 2024, 33(5): 1867-1882.





本期目录


2024 Vol.33 No.5



往期目录


2024 Vol.33 No.4

2024 Vol.33 No.3

2024 Vol.33 No.2

2024 Vol.33 No.1

更多

👇点击“阅读原文”可进入官网

热科学学报
热科学学报(Journal of Thermal Science)官方公众号,由中国科学院工程热物理研究所创建,旨在分享本刊优秀稿件和发展动态,关注工程热物理领域研究进展,加强学术交流。
 最新文章