R语言广义线性模型索赔频率预测:过度分散、风险暴露数和树状图可视化

科技   科技   2024-08-30 17:44   浙江  

全文下链接:http://tecdat.cn/?p=13963


在精算科学和保险费率制定中,考虑到风险敞口可能是一场噩梦。不知何故,简单的结果是因为计算起来更加复杂,只是因为我们必须考虑到暴露是一个异构变量这一事实。


相关视频



保险费率制定中的风险敞口可以看作是审查数据的问题(在我的数据集中,风险敞口始终小于1,因为观察结果是合同,而不是保单持有人),利息变量是未观察到的变量,因为我们必须为保险合同定价一年(整年)的保险期。因此,我们必须对保险索赔的年度频率进行建模。


 

在我们的数据集中,我们考虑索赔总数与总风险承担比率。例如,如果我们考虑泊松过程

 

考虑以下数据集,



> nombre=rbind(nombre1,nombre2)> baseFREQ = merge(contrat,nombre)

在这里,我们确实有两个感兴趣的变量,即每张合约的敞口,

>  E <- baseFREQ$exposition
和(观察到的)索赔数量(在该时间段内)
>  Y <- baseFREQ$nbre
无需协变量,可以计算每个合同的平均(每年)索赔数量以及相关的方差

> (mean=weighted.mean(Y/E,E))[1] 0.07279295> (variance=sum((Y-mean*E)^2)/sum(E))[1] 0.08778567
看起来方差(略)大于平均值(我们将在几周后看到如何更正式地对其进行测试)。


可以在保单持有人居住的地区添加协变量,例如人口密度




Density, zone 11 average = 0.07962411 variance = 0.08711477Density, zone 21 average = 0.05294927 variance = 0.07378567Density, zone 22 average = 0.09330982 variance = 0.09582698Density, zone 23 average = 0.06918033 variance = 0.07641805Density, zone 24 average = 0.06004009 variance = 0.06293811Density, zone 25 average = 0.06577788 variance = 0.06726093Density, zone 26 average = 0.0688496 variance = 0.07126078Density, zone 31 average = 0.07725273 variance = 0.09067Density, zone 41 average = 0.03649222 variance = 0.03914317Density, zone 42 average = 0.08333333 variance = 0.1004027Density, zone 43 average = 0.07304602 variance = 0.07209618Density, zone 52 average = 0.06893741 variance = 0.07178091Density, zone 53 average = 0.07725661 variance = 0.07811935Density, zone 54 average = 0.07816105 variance = 0.08947993Density, zone 72 average = 0.08579731 variance = 0.09693305Density, zone 73 average = 0.04943033 variance = 0.04835521Density, zone 74 average = 0.1188611 variance = 0.1221675Density, zone 82 average = 0.09345635 variance = 0.09917425Density, zone 83 average = 0.04299708 variance = 0.05259835Density, zone 91 average = 0.07468126 variance = 0.3045718Density, zone 93 average = 0.08197912 variance = 0.09350102Density, zone 94 average = 0.03140971 variance = 0.04672329
可以可视化该信息

> plot(meani,variancei,cex=sqrt(Ei),col="grey",pch=19, > points(meani,variancei,cex=sqrt(Ei))
 

圆圈的大小与组的大小有关(面积与组内的总暴露量成正比)。第一个对角线对应于泊松模型,即方差应等于均值。也可以考虑其他协变量

 

汽车品牌

 

也可以将驾驶员的年龄视为分类变量


点击标题查阅往期内容


R语言贝叶斯广义线性混合(多层次/水平/嵌套)模型GLMM、逻辑回归分析教育留级影响因素数据


左右滑动查看更多


01

02

03

04



让我们更仔细地看一下不同年龄段的人,

 

在右边,我们可以观察到年轻的(没有经验的)驾驶员。那是预料之中的。但是有些类别  低于  第一个对角线:期望的频率很大,但方差不大。也就是说,我们  可以肯定的  是,年轻的驾驶员会发生更多的车祸。相反,它不是一个异类:年轻的驾驶员可以看作是一个相对同质的类,发生车祸的频率很高。

使用原始数据集(在这里,我仅使用具有50,000个客户的子集),我们获得了以下图形:

 

由于圈正在从18岁下降到25岁,因此具有明显的经验影响。

同时我们可以发现有可能将曝光量视为标准变量,并查看系数实际上是否等于1。如果没有任何协变量,






Call:glm(formula = Y ~ log(E), family = poisson("log"))

Deviance Residuals:Min 1Q Median 3Q Max-0.3988 -0.3388 -0.2786 -0.1981 12.9036

Coefficients:Estimate Std. Error z value Pr(>|z|)(Intercept) -2.83045 0.02822 -100.31 <2e-16 ***log(E) 0.53950 0.02905 18.57 <2e-16 ***---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 12931 on 49999 degrees of freedomResidual deviance: 12475 on 49998 degrees of freedomAIC: 16150

Number of Fisher Scoring iterations: 6

也就是说,该参数显然严格小于1。它与重要性均不相关,



Linear hypothesis test

Hypothesis:log(E) = 1

Model 1: restricted modelModel 2: Y ~ log(E)

Res.Df Df Chisq Pr(>Chisq)1 499992 49998 1 251.19 < 2.2e-16 ***---Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

我也没有考虑协变量,







Deviance Residuals:Min 1Q Median 3Q Max-0.7114 -0.3200 -0.2637 -0.1896 12.7104

Coefficients:Estimate Std. Error z value Pr(>|z|)(Intercept) -14.07321 181.04892 -0.078 0.938042log(exposition) 0.56781 0.03029 18.744 < 2e-16 ***carburantE -0.17979 0.04630 -3.883 0.000103 ***as.factor(ageconducteur)19 12.18354 181.04915 0.067 0.946348as.factor(ageconducteur)20 12.48752 181.04902 0.069 0.945011

因此,假设暴露是此处的外生变量可能是一个过强的假设。

接下来我们开始讨论建模索赔频率时的过度分散。在前面,我讨论了具有不同暴露程度的经验方差的计算。但是我只使用一个因素来计算类。当然,可以使用更多的因素。例如,使用因子的笛卡尔积




Class D A (17,24] average = 0.06274415 variance = 0.06174966Class D A (24,40] average = 0.07271905 variance = 0.07675049Class D A (40,65] average = 0.05432262 variance = 0.06556844Class D A (65,101] average = 0.03026999 variance = 0.02960885Class D B (17,24] average = 0.2383109 variance = 0.2442396Class D B (24,40] average = 0.06662015 variance = 0.07121064Class D B (40,65] average = 0.05551854 variance = 0.05543831Class D B (65,101] average = 0.0556386 variance = 0.0540786Class D C (17,24] average = 0.1524552 variance = 0.1592623Class D C (24,40] average = 0.0795852 variance = 0.09091435Class D C (40,65] average = 0.07554481 variance = 0.08263404Class D C (65,101] average = 0.06936605 variance = 0.06684982Class D D (17,24] average = 0.1584052 variance = 0.1552583Class D D (24,40] average = 0.1079038 variance = 0.121747Class D D (40,65] average = 0.06989518 variance = 0.07780811Class D D (65,101] average = 0.0470501 variance = 0.04575461Class D E (17,24] average = 0.2007164 variance = 0.2647663Class D E (24,40] average = 0.1121569 variance = 0.1172205Class D E (40,65] average = 0.106563 variance = 0.1068348Class D E (65,101] average = 0.1572701 variance = 0.2126338Class D F (17,24] average = 0.2314815 variance = 0.1616788Class D F (24,40] average = 0.1690485 variance = 0.1443094Class D F (40,65] average = 0.08496827 variance = 0.07914423Class D F (65,101] average = 0.1547769 variance = 0.1442915Class E A (17,24] average = 0.1275345 variance = 0.1171678Class E A (24,40] average = 0.04523504 variance = 0.04741449Class E A (40,65] average = 0.05402834 variance = 0.05427582Class E A (65,101] average = 0.04176129 variance = 0.04539265Class E B (17,24] average = 0.1114712 variance = 0.1059153Class E B (24,40] average = 0.04211314 variance = 0.04068724Class E B (40,65] average = 0.04987117 variance = 0.05096601Class E B (65,101] average = 0.03123003 variance = 0.03041192Class E C (17,24] average = 0.1256302 variance = 0.1310862Class E C (24,40] average = 0.05118006 variance = 0.05122782Class E C (40,65] average = 0.05394576 variance = 0.05594004Class E C (65,101] average = 0.04570239 variance = 0.04422991Class E D (17,24] average = 0.1777142 variance = 0.1917696Class E D (24,40] average = 0.06293331 variance = 0.06738658Class E D (40,65] average = 0.08532688 variance = 0.2378571Class E D (65,101] average = 0.05442916 variance = 0.05724951Class E E (17,24] average = 0.1826558 variance = 0.2085505Class E E (24,40] average = 0.07804062 variance = 0.09637156Class E E (40,65] average = 0.08191469 variance = 0.08791804Class E E (65,101] average = 0.1017367 variance = 0.1141004Class E F (17,24] average = 0 variance = 0Class E F (24,40] average = 0.07731177 variance = 0.07415932Class E F (40,65] average = 0.1081142 variance = 0.1074324Class E F (65,101] average = 0.09071118 variance = 0.1170159

同样,可以将方差与平均值作图,



> plot(vm,vv,cex=sqrt(ve),col="grey",pch=19,+ xlab="Empirical average",ylab="Empirical variance")> points(vm,vv,cex=sqrt(ve))> abline(a=0,b=1,lty=2)


 

一种替代方法是使用树。树可以从其他变量获得,但它应该是相当接近我们理想的模型。在这里,我确实使用了整个数据库(超过60万行)

树如下


> plot(T)> text(T)


 

现在,每个分支都定义了一个类,可以使用它来定义一个类。应该被认为是同质的。




Class 6 average = 0.04010406 variance = 0.04424163Class 8 average = 0.05191127 variance = 0.05948133Class 9 average = 0.07442635 variance = 0.08694552Class 10 average = 0.4143646 variance = 0.4494002Class 11 average = 0.1917445 variance = 0.1744355Class 15 average = 0.04754595 variance = 0.05389675Class 20 average = 0.08129577 variance = 0.0906322Class 22 average = 0.05813419 variance = 0.07089811Class 23 average = 0.06123807 variance = 0.07010473Class 24 average = 0.06707301 variance = 0.07270995Class 25 average = 0.3164557 variance = 0.2026906Class 26 average = 0.08705041 variance = 0.108456Class 27 average = 0.06705214 variance = 0.07174673Class 30 average = 0.05292652 variance = 0.06127301Class 31 average = 0.07195285 variance = 0.08620593Class 32 average = 0.08133722 variance = 0.08960552Class 34 average = 0.1831559 variance = 0.2010849Class 39 average = 0.06173885 variance = 0.06573939Class 41 average = 0.07089419 variance = 0.07102932Class 44 average = 0.09426152 variance = 0.1032255Class 47 average = 0.03641669 variance = 0.03869702Class 49 average = 0.0506601 variance = 0.05089276Class 50 average = 0.06373107 variance = 0.06536792Class 51 average = 0.06762947 variance = 0.06926191Class 56 average = 0.06771764 variance = 0.07122379Class 57 average = 0.04949142 variance = 0.05086885Class 58 average = 0.2459016 variance = 0.2451116Class 59 average = 0.05996851 variance = 0.0615773Class 61 average = 0.07458053 variance = 0.0818608Class 63 average = 0.06203737 variance = 0.06249892Class 64 average = 0.07321618 variance = 0.07603106Class 66 average = 0.07332127 variance = 0.07262425Class 68 average = 0.07478147 variance = 0.07884597Class 70 average = 0.06566728 variance = 0.06749411Class 71 average = 0.09159605 variance = 0.09434413Class 75 average = 0.03228927 variance = 0.03403198Class 76 average = 0.04630848 variance = 0.04861813Class 78 average = 0.05342351 variance = 0.05626653Class 79 average = 0.05778622 variance = 0.05987139Class 80 average = 0.0374993 variance = 0.0385351Class 83 average = 0.06721729 variance = 0.07295168Class 86 average = 0.09888492 variance = 0.1131409Class 87 average = 0.1019186 variance = 0.2051122Class 88 average = 0.05281703 variance = 0.0635244Class 91 average = 0.08332136 variance = 0.09067632Class 96 average = 0.07682093 variance = 0.08144446Class 97 average = 0.0792268 variance = 0.08092019Class 99 average = 0.1019089 variance = 0.1072126Class 100 average = 0.1018262 variance = 0.1081117Class 101 average = 0.1106647 variance = 0.1151819Class 103 average = 0.08147644 variance = 0.08411685Class 104 average = 0.06456508 variance = 0.06801061Class 107 average = 0.1197225 variance = 0.1250056Class 108 average = 0.0924619 variance = 0.09845582Class 109 average = 0.1198932 variance = 0.1209162

在这里,当根据索赔的经验平均值绘制经验方差时,我们得到

 

在这里,我们可以识别剩余异质性的类。




本文中分析的数据、代码分享到会员群,扫描下面二维码即可加群! 


点击文末“阅读原文”

获取全文完整代码数据资料


本文选自《R语言广义线性模型索赔频率预测:过度分散、风险暴露数和树状图可视化》。


点击标题查阅往期内容

R语言通过伽玛与对数正态分布假设下的广义线性模型对大额索赔进行评估预测
R语言使用链梯法Chain Ladder和泊松定律模拟和预测未来赔款数据
R语言对巨灾风险下的再保险合同定价研究案例:广义线性模型和帕累托分布Pareto distributions分析
R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分析保险资金投资组合信用风险敞口
R语言预测人口死亡率:用李·卡特(Lee-Carter)模型、非线性模型进行平滑估计
R语言中GLM(广义线性模型),非线性和异方差可视化分析
NBA体育决策中的数据挖掘分析:线性模型和蒙特卡罗模拟
基于R语言的lmer混合线性回归模型
Python用PyMC3实现贝叶斯线性回归模型
R语言中Gibbs抽样的Bayesian简单线性回归
R语言线性判别分析(LDA),二次判别分析(QDA)和正则判别分析(RDA)
R和Python机器学习:广义线性回归glm,样条glm,梯度增强,随机森林和深度学习模型分析
SPSS中的等级线性模型Multilevel linear models研究整容手术数据
R语言中的block Gibbs吉布斯采样贝叶斯多元线性回归
R语言用线性模型进行预测: 加权泊松回归,普通最小二乘,加权负二项式模型,多重插补缺失值



拓端数据部落
拓端(tecdat.cn)创立于2016年,提供专业的数据分析与挖掘服务,致力于充分挖掘数据价值。
 最新文章