✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
DDPG算法简介
DDPG是一种无模型的、基于策略的深度强化学习算法,适用于连续动作空间。它结合了深度神经网络来表示策略和值函数,并使用Actor-Critic架构进行训练。
SMC抖振抑制问题
滑模控制(SMC)是一种鲁棒的控制系统设计方法,但由于其固有的滑动模式,可能会产生抖振现象。抖振抑制的目的是通过设计合适的控制策略来减少抖振,提高系统的性能。
DDPG实现SMC抖振抑制的步骤
定义状态空间:状态空间应包含足够的信息来描述系统的当前状态和抖振水平,例如系统状态变量、控制输入和抖振相关的指标。
定义动作空间:动作空间是控制输入,它应该能够影响系统的状态和抖振水平。
设计Actor网络:Actor网络是一个深度神经网络,它根据当前状态预测控制输入。网络应该能够输出连续的动作值。
设计Critic网络:Critic网络也是一个深度神经网络,它评估Actor网络输出的控制输入的质量。网络应该输出一个标量值,表示当前状态和动作下的估计回报。
经验回放:使用经验回放机制来存储和重用历史经验,这有助于网络的稳定训练。
目标网络:为了稳定训练,使用目标网络来平滑Critic网络的更新过程。
训练:使用DDPG算法训练Actor和Critic网络。在训练过程中,Actor网络通过Critic网络提供的反馈来学习如何输出控制输入以减少抖振。
评估:在训练完成后,使用测试数据评估DDPG算法的性能,确保抖振得到有效抑制。
注意事项
DDPG算法的实现需要选择合适的网络结构、激活函数和优化器。
训练过程中需要调整超参数,如学习率、折扣因子、经验回放缓冲区大小等。
需要确保状态空间和动作空间的设计能够有效地反映抖振现象和控制策略的影响。
训练过程可能需要较长时间,并且可能需要多次实验来找到最佳的超参数设置。
总结
基于DDPG的SMC抖振抑制是一种有效的方法,它可以通过学习来减少抖振,提高系统的性能。这种方法需要根据具体的应用场景和系统特性来设计状态空间、动作空间和网络结构。在实际应用中,可能需要多次实验和调整来达到最佳的性能。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
本主页CSDN博客涵盖以下领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类