导读
本文摘自大气所网站科研进展栏目,点击图片或文末“阅读原文”进入网站查看详细介绍,一起回顾一下吧>>
1. 张庭玉等-Clm Dyn: FGOALS-g3超级集合试验对热带气旋生成频率气候态和年际变率的模拟能力评估
Citation:
Zhang, T., T. Zhou, X. Huang, W. Zhang, X. Chen, P. Lin, and L. Li, 2024: Evaluation of tropical cyclone genesis frequency in FGOALS-g3 large ensemble: mean state and interannual variability. Clim Dyn, https://doi.org/10.1007/s00382-024-07388-8
2.叶京等-ERL: 气团足迹和污染源贡献的显著转变:中国东部上黄背景站观测的视角
Citation:
Jing Ye, Yuting Zhang, Weijie Yao, et al. 2024:Significant shift of footprint pattern and contribution of pollutant source: a perspective from observations at Shanghuang background station in east China. Environmental Research Letters, https://doi.org/10.1088/1748-9326/ad8369
3. 龚海楠等-GRL: 2022年12月北美极端冷事件归因
Citation:
Gong H, Ma K, & Wang L. Internal variability dominated the extreme cold wave over North America in December 2022[J]. Geophysical Research Letters, 2024, 51, e2024GL111429. https://doi.org/10.1029/2024GL111429
4.黄刚等-BES: 极端湿度环境或增加心血管疾病风险
Citation:
C. Zheng, J. Wu, H. Tang, X. Wang, Y. Tian, X. Cao, Y. Tian, R. Gu, Y. Song, X. Pei, J. Qiu, Z. Nie, M. He, G. Huang, Z. Wang. Relationship of Ambient Humidity with Cardiovascular Diseases: A Prospective Study of 24,510 Adults in a General Population[J]. 2024. Biomedical and Environmental Sciences.
5.许鲁君等-AAS:冷锋过境对芬兰湖气交换特征的影响
Citation:
Xu, L. J., and Coauthors, 2024: Characteristics of sensible and latent heat fluxes and cold frontal effects over a boreal lake. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-024-3214-y.
6.李柯欣等-NPJ: GMST不同尺度分量的月际变化特征为其季节内-年际精准预测提供关键可预测源
Citation:
Li, K. X., Zheng F.*, Zhu J., et al., 2024: Advancing annual global mean surface temperature prediction to 2 months lead using physics based strategy. npj Clim. Atmos. Sci., 7, 219. https://doi.org/10.1038/s41612-024-00736-9
Li, K. X., Zheng F.*, Zhu J., Zeng Q., 2024: El Niño and the AMO sparked the astonishingly large margin of warming in the global mean surface temperature in 2023. Adv. Atmos. Sci., 41, 1017−1022. https://doi.org/10.1007/s00376-023-3371-4.
Zheng, F.*, et al., 2023: Will the globe encounter the warmest winter after the hottest summer in 2023? Adv. Atmos. Sci., 41, 581–586. https://doi.org/10.1007/s00376-023-3330-0.
Li, K. X., Zheng F.*, Cheng L., et al., 2023: Record-breaking global temperature and crises with strong El Niño in 2023-2024. The Innovation Geoscience, 1, 100030. https://doi.org/10.59717/j.xinn-geo.2023.100030.
Li, K. X., Zheng F.*, et al., 2022: Key regions in the modulation of seasonal GMST variability by analyzing the two hottest years: 2016 vs. 2020. Environ. Res. Lett., 17, 094034. 10.1088/1748-9326/ac8dab
7.张稳等-FR: 生态保护措施减缓了内蒙古自治区草地退化的态势
Citation:
Zheng, H., Huang, Y., Zhang, W., Song, C., Zhang, Q., Sun, W., Yu, Y., Yu, L., Li, H., Zhang, C., Jiang, W., Yang, X., & Wang, G. (2024). The implementation of ecological protection in Inner Mongolia has slowed down grassland degradation. Fundamental Research. https://doi.org/https://doi.org/10.1016/j.fmre.2024.10.006
8.张稳等-EI: 中国北方草地地上和地下净初级生产力的高精度制图与因子分析
Citation:
Zheng, H., Yang, X., Song, C., Zhang, W., Sun, W., & Wang, G. (2024). Distinct environmental controls on above- and below-ground net primary productivity in Northern China’s grasslands. Ecological Indicators, 167, 112717.
9.孔磊等-ESSD: 2013–2020年中国大气污染物排放源反演清单CAQIEI发布
Citation:
Kong Lei, Xiao Tang, Zifa Wang, et al. Inversed Emission Inventory for Chinese Air Quality (CAQIEI) version 1.0[DS/OL]. V2. Science Data Bank, 2024[2025-01-02]. https://cstr.cn/31253.11.sciencedb.13151. CSTR:31253.11.sciencedb.13151.
10.江洁等-GRL: 基于气候敏感度的亚洲高山区多年冻土约束预估
Citation:
Jiang J, Zhou T, Cao B (2024) Surface Warming Constraint Projects Less Permafrost Thawing in High Mountain Asia. Geophysical Research Letters 51:e2024GL110465. https://doi.org/10.1029/2024GL110465
11.朱星儒等-SB&GRL&EF等: 北极多年冻土区野火发生和生态影响
Citation:
1. Zhu, X., Jia, G., & Xu*, X. (2024). Wildfire emissions offset more permafrost ecosystem carbon sink in the 21st century. Earth’s Future, 12, e2024EF005098. https://doi.org/10.1029/2024EF005098
2. Zhu, X., Jia, G., & Xu*, X. (2024). Accelerated rise in wildfire carbon emissions from Arctic continuous permafrost. Science Bulletin. 69(15): 2430-2438. https://doi.org/10.1016/j.scib.2024.05.022
3. Zhu, X., Xu*, X., & Jia, G (2024). Contribution of high-latitude permafrost regions in the Northern Hemisphere to global wildfire carbon emissions. Science China Earth Science, 67, 3239–3251. https://doi.org/10.1007/s11430-024-1397-2
4. Zhu, X., Xu, X., & Jia*, G. (2023). Recent massive expansion of wildfire and its impact on active layer over pan-Arctic permafrost. Environmental Research Letters. 18, 084010. https://doi.org/10.1088/1748-9326/ace205
5. Zhu, X., Xu, X., & Jia*, G. (2021). Asymmetrical trends of burned area between eastern and western Siberia regulated by atmospheric oscillation. Geophysical Research Letters, 48, e2021GL096095. https://doi.org/10.1029/2021GL096095
12.郝沙彬等-CD:基于多套大气再分析及CMIP6模式数据揭示北太平洋和北大西洋涛动对华南春季降水年际变化的协同影响
Citation:
Hao, S. B, Li, J. D, Mao, J. Y*, Liu, Y. M, and G. X. Wu, 2024: Interannual variability of spring rainfall over South China in association with the North Pacific Oscillation and North Atlantic Oscillation as revealed by reanalysis data and CMIP6 simulations. Climate Dynamic, 62, 7535–7557. https://doi.org/10.1007/s00382-024-07293-0
13.王一楠等-AAS: 青藏高原内陆云的垂直结构探测研究
Citation:
Zhao, W., and Coauthors, 2024: Unveiling cloud vertical structures over the Interior Tibetan Plateau through Anomaly Detection in Synergetic Lidar and Radar Observations. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-024-3221-z.
14.李钰岚等-ERL: 蒙古高原夏季干旱趋势的归因
Citation:
Li Yulan, Gong Hainan*, Chen Wen*, Wang Lin. (2024). Attribution of drought trends on the Mongolian Plateau over the past decades. Environmental Research Letters. 19, 074034. DOI: 10.1088/1748-9326/ad560d
15.李婷婷等-IS: 自主研发的稻田甲烷排放模型在全球尺度得到验证及应用
Citation:
Qiwen Hu, Jingxian Li, Hanzhi Xie, Yao Huang, Josep G. Canadell, Wenping Yuan, Jinyang Wang, Wen Zhang, Lijun Yu, Shihua Li, Xinqing Lu, Tingting Li, Zhangcai Qin,Global methane emissions from rice paddies: CH4MOD model development and application,Science,Volume 27, Issue 11,2024,
111237,ISSN 2589-0042,https://doi.org/10.1016/j.isci.2024.111237.
16.王君华等-JAMES: 定量解析重污染过程中气象、排放和化学转化的贡献
Citation:
[1] Wang, J., Ge, B., Kong, L., Chen, X., Li, J., Lu, K.,Dong, Y., Su,H., Wang, Z., Zhang, Y. (2024). Quantitative Decoupling Analysis for Assessing the Meteorological, Emission, and Chemical Influences on Fine Particle Pollution. Journal of Advances in Modeling Earth Systems, 16(11), e2024MS004261. doi:https://doi.org/10.1029/2024MS004261
[2] 葛宝珠、王君华、王自发. 一种针对大气污染过程的定量解析方法和系统. 专利号:ZL202010313090.5;申请日期:2020年04月20日;授权日期:2021年04月27日;专利权人:中国科学院大气物理研究所
17.贾龙等-STE: 氨气和克氏中间体的新反应:生成有机胺并抑制异戊二烯SOA
Citation:
Li, X.Y., Jia, L.*, Xu, Y.F., Pan, Y.P., 2024. A novel reaction between ammonia and Criegee intermediates can form amines and suppress oligomers from isoprene, Sci. Total Environ., 956, 177389, https://doi.org/10.1016/j.scitotenv.2024.177389