中国农科院研究员南下深圳,连发Cell、Science

学术   2024-12-25 23:42   北京  

传统杀虫剂会带来一系列副作用,如环境污染、杀死青蛙等有益生物等,此外,长时间使用单一农药,还有可能致使害虫产生抗药性,造成农药“失效”。


能否找到一种绿色、无污染的方法做到“精准打击”?


为此,中国农业科学院深圳农业基因组研究所教授杨青团队已经努力了数十年。


2024年12月24日,《细胞》(Cell)在线发表了杨青团队的最新研究成果。研究揭示了ABCH转运蛋白转运脂质和外排农药的分子机制,并获得了能够抑制转运功能的小分子抑制剂。


该研究解析了害虫的“外部防御”和“解毒”机制,并找到了能直接用于合成绿色农药的有效成分。

“靶向”农药对害虫更“专一”

在漫长的农业发展进程中,农作物病虫害始终是悬在头顶的达摩克利斯之剑,对粮食安全构成严重威胁。据联合国粮农组织估算,全世界每年因农作物病虫害造成的产量损失高达40%,经济损失超过2200亿美元。

“虫口夺粮”成为摆在人们面前的一道难题。

此前,人们采用喷洒农药、气味引诱、引入天敌等多种防治手段,但由于抗药性的增加和成本过高等因素,导致防治效果并不理想。人们逐渐意识到,相比“万能”农药,我们更需要对害虫“专一”的农药,于是,靶向农药应运而生。所谓“靶向”,就是以害虫为靶,针对害虫独特的结构特征而量身打造的一种农药,因其专一性强、安全高效、无污染,又被称为绿色农药。

中国工程院院士钱旭红说,绿色农药创新研究和原创性靶标的发现是农业科技领域的重大科学问题和工程技术难题之一,其是当今植物保护行业和农药产业可持续和高质量发展进程的必然趋势,是研究中必须攀登和抢占的制高点。其关键核心在于新型绿色农药分子靶标的发现与开发,这是能推动整个领域跨越发展的驱动力所在。

而创制靶向农药的关键,在于找到合适的农药分子靶标。农药分子靶标是指农药在分子水平上作用的特定生物分子或蛋白质,它们能够直接影响害虫的生命活动。

在这项研究中,杨青团队发现了一类特殊的蛋白质——ABCH转运蛋白。这类蛋白负责将脂质运输到昆虫表皮,参与昆虫几丁质表皮脂质屏障的构建,并与抗药性直接相关。由于ABCH只存在于昆虫和其他节肢动物中,不存在于人类和哺乳动物中,因此是一个理想的农药分子靶标。

杨青团队解析了ABCH转运蛋白的冷冻电镜结构,首次揭示了ABCH转运蛋白运输脂质和农药的完整过程,这是昆虫学和农药靶标学领域的重大突破,为开发绿色农药奠定了重要基础。

ABCH运输脂质和农药分子的机制。中国农科院供图

独特的“脂质转运”机制和“解毒”机制

几丁质表皮是昆虫自我保护的第一道屏障。昆虫表皮中不溶于水的脂质成分,可以防止昆虫体内水分的蒸发并防止病原体入侵、减少外源物质和毒素的渗透,从而保证了昆虫对各类严苛自然环境的强大适应能力。

“ABC转运蛋白家族是所有生命形式中都存在的、最古老的蛋白质家族。”中国科学院院士康乐说,通过结合并水解ATP为跨膜转运提供能量,ABC转运蛋白能够运输包括离子、小分子、药物、脂质、肽类等多种物质。这些蛋白既可以将物质从细胞内泵出细胞外(例如排出毒性物质或药物),也可以将外界物质转运到细胞内(如吸收营养物质)。

在昆虫中,有一类独特的转运蛋白ABCH,属于ABC家族H亚家族,不存在于人、畜牧、植物等生物中,但却关系到昆虫的生死。它的生理底物是什么?转运的机制有什么独特之处?是否可以开发为人畜安全的农药分子靶标?这些科学问题一直都没有得到科学的阐明。

杨青团队发现,ABCH转运蛋白优先转运昆虫表皮中的重要脂质成分——神经酰胺。神经酰胺具有保湿和抗菌的功效。ABCH招募细胞膜中的神经酰胺,让它结合在一个狭窄、细长的“拱形”通道中,在ATP水解提供的驱动力下,形成一种“挤压泵”将神经酰胺分子转运到细胞外。

神经酰胺是哺乳动物细胞和昆虫表皮的重要组分。中国农科院供图

杨青团队还发现,ABCH除了具有转运脂质方面的生理功能外,还具有外排杀虫剂的功能,因而与害虫的耐药性产生相关。ABCH每次招募两个杀虫剂“苯氧威”分子进入“拱形”转运通道,在ATP存在下,将具有细胞毒性的“苯氧威”分子排出细胞外。

钱旭红指出,该研究首次揭示了昆虫ABCH转运蛋白转运生理底物脂质以及外源杀虫剂底物的分子机制,并阐明了抑制剂分子的结合和抑制机理,为基于三维结构的新型杀虫剂筛选和设计提供了精确的靶点信息。这一原创性成果有望催生出一大批绿色、高效、靶向昆虫表皮脂质屏障形成过程的创新型农药产品,为全球农业生产中的害虫防控注入全新的活力与希望,有力推动农业向着更加绿色、可持续的方向蓬勃发展。
中国工程院院士宋宝安表示,杨青团队首次在原子尺度极为详尽地阐释了昆虫特有的ABCH 转运蛋白与杀虫剂分子间的精妙的相互作用,提出ABCH运用特殊“挤压泵”机制实现杀虫剂分子外排的创新性分子机制,这无疑是昆虫抗药性机制研究领域一项具有深远意义的重大科学进展。

康乐说,ABCH转运蛋白转运脂质以及外排杀虫剂分子的机制,这些机制与其他ABC家族的转运机制显著不同,体现了昆虫表皮生物合成的独特性,是昆虫学领域的重大进展。

ABCH参与脂质转运和杀虫剂解毒。中国农科院供图

筛选获得ABCH小分子抑制剂

作为这项研究挑战的一部分,杨青团队筛选获得了能抑制ABCH的转运功能的小分子LMNG。这个“X”型的分子完美地将转运蛋白“卡”在底物结合构象中,不能结合ATP完成农药分子的外排功能,因而为解决抗药性问题提供了全新的思路。

杨青告诉《中国科学报》,在过去几十年中,关于人和微生物的ABC转运蛋白抑制剂的筛选以及抑制机理的研究,已取得突破性进展。人们发现,绝大多数抑制剂的工作机制是阻断跨膜转运通道或阻断ATP的水解。

此项研究有新的发现,即LMNG可以通过“双重锁”机制同时阻断ABCH的转运通道与ATP水解。这一新的抑制机理的发掘为基于LMNG骨架设计靶向ABCH的高效杀虫剂提供了强有力的支撑。

宋宝安认为,杨青团队开发的ABCH转运蛋白的特异性抑制剂LMNG,可以精准阻断其外排功能并作为杀虫剂增效剂发挥作用,为解决抗药性问题提供了全新的思路与有效手段,有望引领农业害虫防控领域的技术革新潮流,开启害虫抗性治理的崭新篇章。

康乐指出,能抑制ABCH转运蛋白的小分子LMNG,为针对开发新机制分子靶标、有效解决抗药性问题开辟了全新的思路,对推动我国农业健康可持续发展具有重大战略意义。

植物病虫害综合治理全国重点实验室、中国农业科学院深圳农业基因组研究所为该论文的第一单位。杨青为论文通讯作者,大连理工大学博士研究生陈金利、中国农业科学院植物保护研究所段燕伟博士为该论文共同第一作者。

该研究得到了科学技术部、国家自然科学基金委员会、深圳市及大鹏新区的资助。项目资助的第一标注为国家重点研发计划。

相关论文信息:
https://doi.org/10.1016/j.cell.2024.11.033

编辑 | 余   荷

排版 | 王大雪



深吸一口气,

涌入鼻腔的,

也许是雨后清晨花草的芬芳,

抑或是垃圾堆飘来的阵阵恶臭,

前者令人神清气爽,

后者令人捂鼻作呕,


气味,成为人们选择亲近或逃离的重要判断标准,


对于昆虫来说,则是它们赖以延续的生存法则。


在生物学家眼中,昆虫是如何感知气味的?又是如何做出行为反应的?成了研究昆虫化学生态学的重要课题。王桂荣和他的团队一直致力于昆虫嗅觉受体的功能鉴定,简单的来说,就是找到调控昆虫行为的气味分子,然而,气味分子成千上万,找到特定行为反应的关键受体无疑是大海捞针,历经十几年的研究,王桂荣和他的团队找到了一种高通量的方法,并成功筛选得到绿色高效的昆虫嗅觉行为调控剂。



2024年6月14日,国际顶级学术期刊《科学(Science)》在线发表了中国农业科学院深圳农业基因组研究所(岭南现代农业科学与技术广东省实验室深圳分中心)王桂荣团队华中农业大学殷平教授团队中国农业科学院植物保护研究所等单位合作完成的最新研究成果:“Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex(昆虫气味受体 OR-Orco 异聚体识别气味分子的结构基础)”,研究解析了豌豆蚜Acyrthosiphon pisum报警信息素受体ApOR5-Orco异源四聚体的冷冻电镜结构,揭示了气味配体诱导的气味受体离子通道门控机制,从而为针对气味受体的新型昆虫绿色行为调控剂的研发奠定了结构基础。


原文链接(点击“阅读原文”跳转):https://www.science.org/doi/10.1126/science.adn6881

报警信息素:“快跑!这里有危险”

昆虫依赖灵敏的嗅觉感知环境中的化学信息。在嗅觉识别的过程中,气味受体(OR)扮演着核心角色,它们被激活后能够将外界的化学信号转化为生物电信号,从而介导昆虫相应的行为反应。

报警信息素受体就是其中的一种,研究发现,大多数蚜虫在遇天敌攻击或者其它危险时,会从腹管中释放出含有报警信息素((E)-β-farnesene,简称EBF ) 的小液滴,“警告”邻近的蚜虫快速逃离或掉落。王桂荣团队在前期工作中,成功揭示了蚜虫识别报警信息素的新机制,并进一步阐明了报警信息素如何巧妙地调控天敌昆虫精准定位蚜虫的内在机制,为理解昆虫间的相互作用提供了新的视角。这些研究成果展示了EBF及其类似物作为昆虫行为调控剂的巨大潜力。

该研究借助前沿的冷冻电镜技术,深入探究豌豆蚜报警信息素受体ApOR5-Orco复合物的结构特性,成功解析了ApOR5-Orco在配体结合和未结合状态下的高分辨率冷冻电子显微镜结构。

气味分子介导的ApOR5-Orco异源四聚体离子通道门控机制

(A)豌豆蚜报警信息素受体ApOR5-Orco结合配体的冷冻电镜结构。

(B)ApOR5的配体结合位点。

(C)配体结合引起ApOR5-Orco离子通道的不对称孔开口的模式图。

研究发现,仅ApOR5亚基具有配体结合能力,而ApOrco亚基则作为支撑结构不结合配体。当ApOR5亚基与配体结合后,其成孔螺旋S7b从孔中央向外移动,导致不对称孔开口以供离子流入。

通过单分子荧光试验和细胞电生理试验,更全面地理解ApOR5-Orco复合物的动态组装和功能,揭示了异源四聚体亚基化学计量的分子基础。

该研究不仅首次展示了昆虫OR-Orco异源复合物在独立(封闭通道)和配体结合(开放通道)两种状态下的独特结构,而且深入揭示了昆虫气味识别通道门控的分子机制。

研制更高效的绿色农药

昆虫嗅觉行为调控剂的应用是全球公认的绿色防控技术,具有生物灵敏度高、选择性强、环境友好等优点,能实现害虫的长期控制以嗅觉靶标为出发点,开发行为调控剂已成为当前研究的重要方向。

这一突破性的发现,为基于靶标结构的先导化合物筛选提供了宝贵的分子基础,为高效、特异性绿色昆虫行为调控剂的创制开辟了新的道路。同时,也为科学合理地开发蚜虫绿色防控技术提供了强有力的理论支撑和实践指导,具有重要的科学意义和实际应用价值。

中国农业科学院深圳农业基因组研究所(简称“基因组所”)与华中农业大学联合培养博士后王意东、华中农业大学博士生邱靓和中国农科院植保所王冰研究员为论文共同第一作者,基因组所王桂荣研究员和华中农业大学殷平教授为共同通讯作者。华中农业大学马伟华教授、刘主教授、中国科学院武汉精密测量科学与技术创新研究院龚洲副研究员、中国农业大学张立伟副教授和华中师范大学曹松讲师等也参与了研究工作。华中农业大学校级蛋白质平台和电镜中心对该工作提供了支持。冷冻电镜数据收集在中国科学技术大学冷冻电镜中心完成,该中心高永翔博士为电镜数据收集提供了技术支持。

该研究得到了国家重点研发计划、国家自然科学基金、深圳市科技计划项目、中国农业科学院农业科技创新工程等项目的资助。

专家点评

中国科学院院士、美国科学院外籍院士康乐



昆虫依赖灵敏的嗅觉感知环境中的化学信息,在嗅觉识别的过程中,嗅觉受体神经膜上的气味受体扮演着核心角色,它们能够将外界的化学信号转化为生物电信号,介导昆虫相应的行为反应。与脊椎动物单个受体具有功能不同,绝大多数昆虫特异性受体和共受体形成OR-Orco复合物,共同介导昆虫取食、交配等重要行为反应。尽管昆虫气味受体被发现已有二十多年,但OR-Orco复合物的三维结构一直是个待解之谜。该项研究在国际上首次解析了昆虫OR-Orco复合体的精细结构特性,揭示了气味识别过程中特殊的离子通道门控机制。这一里程碑式的突破为基于结构生物学高通量筛选杀虫剂和驱避剂奠定了理论基础,将有力推动害虫绿色防控新产品研发进程,为实现安全、绿色、可持续的农业生产模式提供强有力的支撑。



中国工程院院士、贵州大学校长

宋宝安



创制靶向小分子绿色农药是国际前沿研究课题,也是国家重大战略需求。基于灵敏的嗅觉研发的害虫引诱剂和驱避剂是全球公认的绿色防控技术,嗅觉受体结构未知是研发高效引诱剂和驱避剂的卡点。该研究团队揭示了昆虫气味受体OR-Orco复合物的三维结构,深入剖析了气味受体与配体互作机制,是昆虫嗅觉编码机制研究领域的重大突破,为开发高效、绿色的行为调控剂奠定了理论基础,显著增强我国在昆虫行为调控剂研究领域的核心竞争力,有望催生一批绿色、高效的昆虫行为调控新产品。



欧洲科学院院士、中国科学院外籍院士Bill Hansson



In 2004, Linda Buck and Richard Axel got the Nobel Prize for their discovery of mammalian olfactory receptors. Ten years later, Leslie Vosshall and other teams identified insect receptors. Shortly after, it was understood that insect receptors need to couple with co-receptor to function effectively. Now, a paper published in Science by the laboratory of Guirong Wang at the Agricultural Genomics Institute in Shenzhen and Yin Ping at Huazhong Agricultural University in Wuhan show how a molecule can be identified by OR-Orco complex. The first authors of this groundbreaking paper are Yidong Wang and Liang Qiu. This knowledge is significant, as we still do not fully understand how olfactory receptors identify molecules in any organism. Additionally, their study focused on aphids, a crucial agricultural pest, suggesting that this knowledge could be used to manage these insects in agriculture. Congratulations to the laboratories of Guirong Wang and Yin Ping on their achievement, and best wishes for continued success in the future.




翻译:

2004年,Linda Buck和Richard Axel因发现哺乳动物嗅觉受体而荣获诺贝尔奖。十年后,Leslie Vosshall及其他团队进一步揭示了昆虫气味受体的存在。随后,人们认识到这些昆虫气味受体需要与共受体结合,才能高效地发挥其功能。如今,深圳农业基因组研究所的王桂荣实验室与武汉华中农业大学的殷平教授团队在《科学》杂志上联合发表了一篇论文,详细阐述了如何通过OR-Orco复合物来识别气味分子。这篇具有开创性的论文的第一作者是王意东和邱靓等人。这一研究成果具有深远的意义,因为我们对嗅觉受体如何识别生物体内分子的机制仍不完全了解。此外,他们的研究聚焦于蚜虫这一重要的农业害虫,这些发现对农业害虫防控具有潜在的应用价值。我们衷心祝贺王桂荣和殷平团队所取得的成就,并期待他们未来能取得更大的成功。


王桂荣课题组介绍



王桂荣,研究员,博士生导师,国家杰出青年科学基金获得者,国务院特殊津贴专家,国家有突出贡献中青年专家,入选国家高层次领军人才、国家百千万人才工程、科技部创新人才推进计划。


2002年在中国农业科学院研究生院获博士学位,2005年-2010年在美国范德比尔特大学从事博士后研究。长期从事害虫化学生态学和功能基因组学的研究工作,阐明了害虫交配、取食、产卵等重要行为的嗅觉分子机制,研发了多种重要农业害虫绿色防控新技术。主持国家自然科学基金杰出青年基金、国家基金重点项目、国家基金重点国际合作项目、国家重点研发计划等项目。发表研究论文200余篇,其中以第一或者通讯作者在PNAS、Current Biology、Mole.Biol.Evol.、eLife等杂志上发表SCI论文100余篇,获授权国家发明专利10件,主(参)编著作3 部。


实验室的主要研究方向:(1)昆虫化学感受机制及行为调控剂的开发。利用组学、神经生物学、行为学等手段解析害虫重要行为的分子机制,挖掘绿色防控新靶标,高通量、智能化筛选害虫行为调控剂。(2)昆虫RNAi的作用机制及核酸农药研发。研究不同昆虫,特别是鞘翅目、鳞翅目和直翅目重要害虫RNAi差异的分子机制,结合组学、合成生物学和纳米材料等新技术开发核酸农药。


长按下方二维码关注全球植物研究进展,更多精彩将会为您呈现!


全球植物研究进展
关注全球植物领域最新研究动态
 最新文章