在深度学习与流体力学深度融合的背景下,科研边界不断拓展,创新成果层出不穷。从物理模型融合到复杂流动模拟,从数据驱动研究到流场智能分析,深度学习正以前所未有的力量重塑流体力学领域。近期在Nature和Science杂志上发表的深度学习驱动的流体力学方面的论文主要集中以下几个方面:
1、深度学习与物理模型的融合:构建物理增强的深度学习模型,将流体力学的控制方程、边界条件等物理规则内嵌于模型中,以提高模型的准确性和物理一致性。
2、复杂流动现象的模拟与预测:深度学习被应用于模拟湍流、多相流等复杂流动现象,利用其强大的表征学习能力揭示传统数值方法难以捕捉的流动复杂性。
3、数据驱动的流体动力学研究:深度学习可以从海量流体数据中挖掘流动的内在规律,为实际工程应用提供数据支持。
4、流场特征的自动识别与分析:深度学习架构能够有效从流体数据中抽取关键特征,应用于流场预测、流动优化、流场可视化等多个领域,极大地提升了流体问题的分析效率和精度。
5、深度强化学习在流体控制中的应用:深度强化学习被应用于流体控制系统设计,如优化飞行器空气动力学性能,展现了其在解决实际工程问题中的巨大潜力。
6、开源软件与工具的发展:伴随深度学习在流体力学研究中应用的普及,相关的开源软件和工具为科研人员提供了便捷的平台,简化了深度学习模型的实现与应用过程,加速了研究成果的转化。
本次培训会议主办方为北京软研国际信息技术研究院,承办方互动派(北京)教育科技有限公司,会议会务合作单位为北京中科四方生物科技有限公司,具体相关事宜通知如下:
专题一 (直播四天) | (详情内容点击上方名称查看) 2024年11月16日-11月17日 2024年11月23日-11月24日 |
专题二 (直播五天) | (详情内容点击上方名称查看) 2024年10月26日-10月27日 2024年11月01日-11月03日 |
专题三 (直播五天) | (详情内容点击上方名称查看) 2024年10月26日-10月27日 2024年11月01日-11月03日 |
专题一 | (详情内容点击上方名称查看) 2024 年 11月 02日-11月03日 2024 年 11月 09日-11月10日 在线直播(授课四天) |
专题二 | (详情内容点击上方名称查看) 2024 年 10月 26日-10月27日 2024 年 11月 02日-11月03日 在线直播(授课四天) |
适用人群
流体力学相关领域的科研人员,力学、航空航天科学与工程、工业通用技术及设备、动力工程、船舶工业、建筑科学与工程、石油天然气工业、机械工业、汽车工业、环境科学与资源利用等领域的工程师,工业自动化、机器人、智能制造等相关行业从业者,跨领域研究人员。
地质学、建筑科学与工程、矿业工程、安全科学与灾害防治、公路与水路运输、水利水电工程、石油天然气工业、地球物理学、环境科学与资源利用、自动化技术等领域的科研人员、工程师、及相关行业从业者、跨领域研究人员。
01
培训讲师
1
流场重建讲师
国外某高校博士研究生, 研究方向集中于深度学习在流体动力学中的应用, 涵盖流场重建, 流场预测及流动控制等领域。过去三年内, 以第一作者及主要作者身份在 Journal of Fluid Mechanics (JFM), Physics of Fluids (POF), Physical Review Fluids (PRF), 以及 Nature Scientific Reports 等 SCI 期刊发表论文十余篇, 谷歌学术引用次数超过 300 次。
2
OpenFOAM 讲师
擅长领域:流体力学与人工智能的交叉科学,流场预测与重构,气动信息预测,基于深度强化学习的气动优化。
3
Fluent 讲师
擅长领域:计算流体力学、流体力学中的机器学习方法、数据驱动的计算力学、有限元方法等。
双一流及985工程建设高校副教授、硕导。主持和参与国家及省自然科学基金多项,发表 SCI 检索论文30余篇,论文总共他引900余次。主要从事岩土工程数值模拟方法研究。在土体基本理论与本构关系、人工智能机器学习在岩土工程中的应用等方面积累了丰富的经验。
江苏省高水平建设重点高校副教授、硕导。参与国家及省自然科学基金数项,发表 SCI 检索论文二十余篇,国际、国内会议论文二十余篇,其中专利两项,软著五项。主要从事岩土工程数值模拟方法。在土体宏微观力学特性与本构关系、城市地下空间工程、人工智能机器学习在岩土工程中的应用等方面积累了丰富的经验。
02
培训大纲
基于机器学习深度学习驱动的流体力学流场重建技术与应用
目录 | 主要内容(*为重点内容) | |
流体数值模拟及 Python编程和数据处理入门 | 一、课程导论 1、智能流体力学介绍 2、机器学习驱动的流体力学流场重建技术介绍 二、流体力学基础 1、流体力学基础 2、流体力学数据获得方法介绍(实验方法, CFD方法) 3、*经典流场模型介绍(绕流,渠道流) 4、*流体力学数据分析方法介绍 三、OpenFOAM 数值模拟基础 1、流体力学求解模型认知(RNAS, LES, DNS) 2、OpenFOAM运行环境配制 3、*OpenFOAM进行流体计算模拟的基本操作 四、 Python 编程入门 1、Python编程快速入门 2、Python数据科学简介 3、*Python流场数据后处理方法(流场云图, 参数统计曲线,概率图,能量谱等) 课程实操:(所有示例流场数据和 Python 算法代码提供给学员) 1、直接数值模拟(DNS)二维(绕流), 三维流动(渠道流)案例教学 2、Python 对流场数据的读取与储存 3、Python 绘制流场云图 4、Python 计算与绘制常用流场统计结果图 | |
机器学习基础 | 一、深度学习基础 1、*深度学习用于计算机视觉: 卷积神经网络(CNN) 2、深度学习用于文本和序列: 长短记忆神经网络(LSTM) 3、生成式神经网络: 生成式对抗神经网络(GAN) 4、*常用的高级深度学习神经网络模型讲解 二、强化学习基础 1、强化学习快速入门 2、高级深度强化案例介绍 课程实操:(所有示例流场数据和 Python 算法代码提供给学员) 1、在个人电脑上搭建深度学习Python 环境(Tensorflow在CPU以及GPU安装方法) 2、使用 CNN 开发第一个深度学习算法(解决分类问题) 3、基于深度学习算法开发第一个流场预测算法(数据驱动的方柱绕流流场预测生成) | |
超分辨率问题和二维流场的三维重建问题 | 一、超分辨率问题: 1、*研究数据生成方法 2、*超分辨率问题的常用的深度学习模型介绍 3、*数据后处理方法 二、二维流场的三维重建: 1、*研究数据生成方法(三维流场) 2、*二维流场的三维重建的常用的深度学习模型介绍 3、*三维数据后处理方法 课程实操:(所有示例流场数据和 Python 算法代码提供给学员) 1、完成简单的超分辨率重构问题 2、完成简单的三维重构问题 3、三维流场数据后处理(结合 Python 代码和 Paraview) | |
流场去噪问题和流场参数重建问题 | 一、流场去噪问题 1、*研究数据生成方法 2、*去噪常用的深度学习模型介绍(基于物理约束的强化学习方法以及自监督方法) 二、流场参数重建问题 1、*流场参数重建问题的常用的深度学习模型介绍 2、*PIV 实验数据后处理方法 课程实操:(所有示例流场数据和 Python 算法代码提供给学员) 1、完成流场去噪问题 2、完成流场参数重建问题 | |
基于深度学习的高维插值方法 前沿论文分享及SCI论文写作指导 | 目标:以结构-声耦合模型 (Structure-Acoustic Coupling Models)中的传递函数预测为例讲解基于深度学习的高维插值方法 一、 高维插值方法 1、结构-声耦合模型问题介绍 2、*研究数据生成方法(基于Comsol) 3、*基于深度学习的高维插值方法 二、论文分享以及 SCI 写作指导 课程实操:(基于深度学习的高维插值方法应用) | |
答疑与互动 | 课程期间帮助学员解决理论疑点、技术难点,并可一定程度地给予学员相关研究方向的科研以及论文写作指导 |
基于OpenFOAM和深度学习驱动的流体力学计算与应用
目录 | 主要内容 | |
机器学习与流体力学入门 | 一、经典流体力学 核心要点: 1、回顾经典流体力学理论,掌握NS方程的基本求解方法和模型 2、探索流体力学在工业领域的多元应用 3、运用开源软件OpenFOAM进行流体计算模拟的基本操作 4、流体力学求解模型认知(RNAS, LES) 实操环节: 基于OpenFOAM的矩形柱体LES模拟案例(经典案例数据与代码提供给学员) 二、机器学习基础与应用 核心要点: 1、机器学习的基础概念,熟悉并掌握一系列常见及经典的机器学习算法,为后续课程打下坚实基础 2、掌握运用Python语言进行流动数据的高效后处理。 实操环节: 1、Python编程,为编程新手提供友好的入门指导 2、展示机器学习在流体力学领域的实际应用案例。 3、基于python语言的CFD数据后处理(数据与代码提供给学员) | |
人工智能与实验流体力学 | 三、实验流体力学 核心知识点: 1、掌握实验流体力学的基础知识,了解相关实验设备。 2、了解机器学习技术在实验流体力学中的应用。 3、掌握Python语言进行实验数据的后处理,增强数据处理能力。 4、风洞试验 实操环节: 1、展示基于PIV技术的流场数据获取 2、展示机器学习在实验流体力学领域的应用案例。 3、运用Python处理实验数据(数据与代码提供给学员) 四、人工智能与实验流体力学(流场部分) 核心知识点: 1、掌握实验流体力学数据处理的先进方法 2、了解并掌握GAN、DNN、CNN等深度学习技术在流场重构与预测中的应用。 实操环节: 1、基于人工智能技术的流场预测与重构方法 2、运用DNN技术进行流场预测(数据与代码提供给学员) 五、人工智能与实验流体力学(压力部分) 核心知识点: 1、深入了解人工智能技术在压力预测领域的应用前景 2、掌握UNet算法在压力时序预测中的高效使用方法。 实操环节: 1、基于人工智能技术的压力预测方法 2、运用UNet算法进行压力时序预测(数据与代码提供给学员) | |
人工智能与计算流体动力学 | 六、人工智能技术与计算流体动力学 核心知识点: 1、学习爬虫技术在网页数据获取中的应用,掌握从开源网站获取信息的技术 2、熟悉民航机翼的空气动力学性能分析 3、掌握基于多层感知机(MLP)的气动性能预测方法。 实操环节: 1、基于爬虫技术的网页数据获取流程 2、基于深度学习的机翼气动性能预测 3、基于多层感知机(MLP)的民航超临界机翼气动性能预测(数据与代码提供给学员) 七、时空超分辨率技术 核心知识点: 1、了解时空超分辨率技术的基本原理与应用 2、掌握人工智能技术在湍流时空超分辨率中的创新应用。 3、深入理解深度学习与湍流超分辨率的耦合机制。 实操环节: 1、基于LES/DNS湍流模拟的时空超分辨率研究 4、基于深度学习的流场时序超分辨率处理(数据与代码提供给学员) | |
深度强化学习学习在流体力学中的应用 | 八、深度强化学习(Deep Reinforcement Learning, DRL) 核心知识点: 1、掌握深度强化学习的框架 2、熟悉深度强化学习的常见算法及其应用场景。 3、理解深度强化学习中动作空间与观察空间的定义与应用。 实操环节: 1、深度强化学习在翼型优化的应用 2、基于深度强化学习的矩形柱体主动流动控制(数据与代码提供给学员) 九、深度强化学习的工程实践 核心知识点: 1、掌握定义定义离散动作空间/连续动作空间的方法,提升算法设计能力 2、学习深度强化学习在工程领域的实际应用,增强解决复杂问题的能力。 实操环节: 1、耦合代理模型的深度强化学习在民航飞机外形优化中的应用 2、运用深度强化学习进行离散动作空间/连续动作空间的优化(数据与代码提供给学员) | |
课程互动与答疑 | 1、回顾实践案例课程内容,巩固所学知识、通过答疑加深对知识点的理解与掌握 2、前沿文献的解读,如SORA技术、风乌技术等,了解人工智能技术在流体力学领域的最新进展,保持学术前沿性。 |
部分案例展示:
基于Fluent和深度学习算法驱动的流体力学计算与应用
目录 | 主要内容 | |
机器学习与流体力学入门 | 一、流体力学基础理论与编程实战 1、流体力学的发展概述 2、不可压缩流体力学的基本方程 3、偏微分方程数值求解介绍 4、傅里叶变换和流体的尺度分析 5、伪谱法求解不可压缩流体力学方程 案例实践: 1、Matlab编程实现有限差分(案例数据与代码提供给学员) 2、Python编程伪谱法求解NS方程(案例数据与代码提供给学员) 二、Fluent简介与案例实战 1、Fluent软件概述:软件功能和特点、Fluent在流体力学中的应用 2、网格划分与计算流程:网格划分技术、Fluent计算流程和步骤 3、基于Fluent软件的稳态与非稳态流体计算 4、基于Fluent软件动网格技术的两相流求解 5、Fluent仿真后处理 案例实践:圆柱绕流、小球入水的Fluent求解流程(案例文件提供给学员) | |
人工智能深度学习模型与流场超分辨技术 | 三、人工智能基础理论与优化方法 1、人工智能的基本概念 2、最优化理论算法: a) 最优问题的定义 b) 优化算法介绍 3、机器学习算法简介:支持向量机等机器学习算法 4、深度学习的基本概念及实战 案例实践:Python实现基础网络架构 1、梯度下降算法的Python实现(案例数据代码提供给学员) 2、二阶函数极值问题的求解(案例数据代码提供给学员) 四、深度学习模型在流场超分辨中的应用 1、超分辨的基本概念和应用场景 2、经典超分辨算法 a) 基于局部自适应对偶性先验的最优化方法 b) 超分辨算法的性能评估 3、分别基于卷积神经网络(CNN)和生成对抗网络(GAN)的流场超分辨案例与实战 案例实践:Python编程实现流场超分辨,不同模型超分辨的优势和劣势分析 1、经典模型实现流体超分辨(案例数据代码提供给学员) 2、深度学习模型实现流体的超分辨(案例数据代码提供给学员) 五、深度学习模型的力学新范式及ODE求解实战 1、深度学习模型的动力学解释 2、残差神经网络(ResNet)与神经常微分方程(NeuralODE) 3、Neural ODE与与流体力学方程求解 4、循环神经网络(RNN)与流体动力学时序预测 a) RNN的基本概念 b) RNN与隐式算法的对应关系 c) 时间序列预测在流体动力学中的应用 5、卷积神经网络(CNN)与流场特征提取 a) CNN的基本原理 b) 卷积与微分算子的对应关系 c) CNN如何用于流场图像分析,如涡识别 案例实践:利用Neural ODE求解特定流体(案例数据代码提供给学员) | |
深度学习模型在流体力学中的应用 | 六、神经网络在湍流模拟中的应用 1、物理信息神经网络(PINN) 2、流动的拉格朗日结构提取与相互作用 a) 基于图片的涡旋特征提取 b) 基于图神经网络(GNN)的神经网络算法 3、嵌入物理信息的神经网络 a) 基于几何对称性改造神经网络 b) 基于拉格朗日结构和几何对称性的神经网络 案例实践:Python编程湍流的拉格朗日方法 1、流体力学的拉格朗日算法(案例数据代码提供给学员) 2、流体力学的拉格朗日神经网络(案例数据代码提供给学员) 七、神经网络在空气动力学中的应用 1、可压缩流体力学求解的数值方法和机器学习方法 a) 可压缩流体力学的数值方法 b) 神经网络在激波求解中的应用 2、高精度格式在神经网络中的实现 a) 高精度格式的主要思想和局限性 b) 基于高精度格式的机器学习算法 3、深度强化学习(Deep Reinforcement Learning)的理论与算法 4、可压缩激波求解案例与编程实战 案例实践:Python编程求解可压缩流体力学方程 1、高精度格式求解可压缩流体力学方程(案例数据代码提供给学员) 2、深度学习模型求解可压缩流体力学方程(案例数据代码提供给学员) | |
流动可视化与新兴技术 | 八、流动生成与后处理 1、Tecplot可视化展示标量场、向量场等 2、Houdini展示渲染高保真流场 3、基于扩散模型(Diffusion Model)的流动生成 4、动模态分解及流场预测 案例实践:Matlab编程实现DMD(案例数据代码提供给学员) |
部分案例展示:
深度学习在岩土工程中的应用与实践
课 程 | 内容 | |
岩土工程 物理模型基础 | 1. 岩土工程中的基本物理模型及工程问题 1.1.饱和土的一维渗流固结模型(扩散方程)及实际工程应用 1.2.达西定律与饱和土渗流方程(Laplace equation)及适用性 1.3.非饱和土渗流数学模型(Richards方程)及实际工程应用 1.4.工程应用中的正问题与反问题,通过具体案例区分 | |
2. 基本物理模型的求解方法 2.1.边界条件:通过图解和实际工程案例,讲解边界条件在物理模型中的作用,如无流边界、狄利克雷边界等 2.2.线性方程的解析解法 2.2.1. 直接解法:分离变量法及行波变换法 2.2.2. 间接解法:积分变换法 实战演练:分离变量法求固结方程的解析解 2.3.非线性方程的解析解法 2.3.1. 直接解法:双线性方法 2.3.2. 间接解法:反散射变换 实战演练:双线性方法求KdV方程的解析解 2.4.线性与非线性方程的数值解法 2.4.1. 有限差分法 2.4.2. 有限单元法 2.4.3. 谱方法 实战演练:时间分布Fourier方法求Boussinesq方程的数值解 | ||
Python及神经网络构建基础 | 3. Python基本指令及库 3.1.Python基础:通过交互式编程环境,教授Python基础,包括数据类型和逻辑运算等 3.2.科学计算库:介绍Numpy和Matplotlib,并讲授如何使用它们进行科学计算和数据可视化 实战演练:基于简单Numpy指令解决岩石图像分类问题 3.3.神经网络构建:通过简单的实例,如使用Numpy构建感知机,教授神经网络的基本概念 3.4.深度学习框架:通过Tensorflow和Pytorch的实例,教授如何构建和训练用于岩土工程问题的深度学习模型 实战演练:基于Pytorch模块求解渗透系数及其影响因素间关系的量化模型 | |
数据—物理 双驱动神经网络 | 4. 深度学习基本原理与数据—物理双驱动神经网络 4.1.深度学习基础 4.1.1. 神经元及激活函数 4.1.2. 前馈神经网络与万能逼近定律 4.1.3. 多种深度神经网络 4.1.4. 自动微分方法 4.1.5. 深度神经网络的损失函数 4.1.6. 最优化方法 4.2.数据—物理双驱动神经网络方法 4.2.1. 物理信息神经网络(PINN)的工作原理及应用介绍 4.2.2. 深度算子网络(DeepONet)的工作原理及应用介绍 4.2.3. 物理深度算子网络(PI-DeepONet)的工作原理及应用介绍 实战演练:利用DeepXDE框架解决饱和土体的固结问题 | |
案例实践 论文复现 | 5. 动手实践:论文复现 论文实例解读与实战(一):PINN模型在固结问题中的应用 参考文献:Application of improved physics-informed neu-ral networks for nonlinear consolidation problems with continuous drainage boundary conditions Ø 神经网络架构的选择与设计 Ø 固结方程作为约束的损失函数设计 Ø 训练及预测 Ø 构建并训练一个固结问题的PINN模型 Ø 硬约束边界条件 论文实例解读与实战(二):PINN模型在非饱和渗透模拟中的应用 参考文献:Surrogate modeling for unsaturated infiltration via the physics and equality-constrained artificial neural network Ø PINN的改进—PECANN模型 Ø 损失函数的设计:数据拟合项与物理定律项的平衡 Ø 训练数据的生成:合成数据与实验数据(多保真PINN模型) Ø PINN用于非饱和渗透模拟的优势(不确定性问题) 论文实例解读与实战(三):PINN模型在非线性波动方程中的应用 参考文献:Explorations of certain nonlinear waves of the Boussinesq and Camassa–Holm equations using physics-informed neural networks Ø Boussinesq方程与Camassa-Holm方程的数值求解难点 Ø PINN的改进—MPINN模型 Ø PINN的优势、劣势及未来发展方向 |
PFC离散元数值模拟仿真技术与应用
课 程 | 内容 | |
理论基础及PFC入门 | 1 岩土工程数值模拟方法概述 1.1基于网格的模拟方法: 有限元、有限差分、大变形处理CEL、ALE、XFEM 1.2基于点的模拟方法: 离散单元法DEM、光滑粒子流方法SPH、物质点法MPM 1.3基于块体的模拟方法 | |
2 离散元与PFC软件操作 2.1 离散元的基本原理(计算原理、宏观参量与微观参量的关系) 2.2 PFC软件界面操作 2.3文件系统 2.4显示控制 2.5帮助文档的使用 | ||
FISH、PYTHON语言及COMMAND命令 | 3 PFC软件的计算控制方法 3.1 PFC计算控制的语言逻辑 3.2 FISH语言(基本语法、函数定义与调用、创建模型、控制模拟过程、处理模拟结果、FISH Callback操作等) 3.3 COMMAND命令(命令结构、创建模型、状态监测与绘图、控制模拟过程、求解控制、状态查询、与FISH语言的混合使用等) 3.4 PYTHON语言(基本语法、Numpy库的使用、接口的使用等) | |
离散元模拟方法 | 4 离散元模拟方法 4.1离散元数值试样的生成方法 4.1.1单元试样模型生成方法 4.1.2边值问题(场地)模型生成方法 4.1.3连续—非连续耦合模型生成方法 4.1.4复杂颗粒形状的模拟方法(Rblock方法、Clump方法) 4.2接触模型选择与参数标定 4.2.1离散元接触模型的选择原则—12个内置模型 4.2.2接触模型参数的标定方法与参数意义—以胶结颗粒材料(岩石、胶结砂土等)为例,讲授参数标定步骤 4.3其他问题 4.3.1模型边界条件施加方法(达到初始平衡状态、开挖类模拟、填筑类模拟、加载类模拟、周期性边界、应力伺服) 4.3.2各种阻尼的选择(粘滞阻尼、局部阻尼、滞回接触模型) 4.3.3时步与时步缩放(静力、动力问题时步及相关命令) 4.3.4试样尺寸、颗粒数量、级配选择 4.3.5 并行计算 | |
土体单元试验模拟 | 5 土体单元试验模拟方法 5.1常规三轴剪切试验模拟(命令流+FISH) 5.1.1建模方法与注意事项 5.1.2模拟结果分析 5.1.3模拟结果可视化 5.2真三轴剪切模拟(命令流+FISH) 5.2.1真三轴加载路径的模拟 5.2.2真三轴强度准则 5.2.3微观结构演变过程 5.3不排水三轴剪切模拟(命令流+FISH) 5.4循环三轴剪切的模拟(命令流+FISH) 5.5颗粒破碎过程模拟(命令流+FISH) 5.6岩石(胶结颗粒)材料的剪切过程模拟 5.7离散元模拟与弹塑性本构模型 | |
工程实例分析 | 6 工程实例分析 6.1活动门试验模拟(命令流+FISH) 6.1.1试样级配控制 6.1.2应力状态控制 6.1.3孔隙比的控制 6.1.4 活动门加载的实现 6.2盾构隧道掌子面稳定性(命令流+FISH) 6.2.1主动失稳模式 6.2.2被动失稳模式 6.3节理岩体中的硐室开挖稳定性(命令流+FISH) 6.3.1节理裂隙岩体的生成 6.3.2初始应力状态控制 6.3.3 开挖模拟 | |
PFC3D与FLAC3D耦合模拟与分析 | 7 离散—连续域耦合模拟 7.1离散—连续耦合模拟方法 Ø 与FLAC3D中一维结构单元耦合 Ø 与FLAC3D中二维壳结构单元或三维实体单元的面的耦合 Ø 与FLAC3D中三维实体单元的耦合(实例) 7.2离散—连续域参数匹配 7.3基于离散—连续域耦合的三轴剪切试验模拟(命令流+FISH) 实例操作:二维壳结构单元耦合(壳单元模拟橡胶膜-创建耦合墙-施加应力边界等向压缩-剪切模拟) 7.4基于离散—连续域耦合的地基承载力分析(命令流+FISH) 实例操作:基于Punch indentation案例的修改与实现 | |
PFC-CFD耦合模拟与分析 | 8 流固耦合分析 8.1颗粒与流体相互作用理论(CFD模块概况、体积平均粗网格法、颗粒与流体相互作用计算) 8.2流固耦合框架 Ø CFD网格、流体域边界设置、网格导入、网格流体参数设置 Ø 孔隙率计算 Ø 耦合时间间隔、耦合时步、网格与颗粒尺寸 Ø 耦合步骤 8.3实例操作分析(命令流+FISH) 8.3.1单向耦合 8.3.2孔隙介质中Darcy流模拟(Fipy应用) 8.3.3 与FLAC3D的渗流耦合模拟 |
部分案例展示:
03
培训特色
1
流畅重建专题
1、前沿技术深度聚焦理论与实践结合:结合大量实战案例与项目演练,课程内容涵盖深度学习在流体力学中的最新应用,包括流场重建、超分辨率、三维重建、高维插值方法等。
2、全方位技能提升:涵盖专业软件操作(OpenFOAM的流体数值模拟)、编程与数据处理(Python编程和数据处理)、深度学习(神经网络、CNN、LSTM和GAN等)、强化学习、流场数据分析(流场云图绘制、统计结果图计算等)、前沿技术应用、科研论文指导等,全方位提升您的流体力学计算与应用能力。
2
OpenFOAM 专题
1.前沿技术深度聚焦:结合大量实战案例与项目演练,聚焦人工智能技术在流体力学领域的最新研究进展。
2.全方位技能提升:涵盖经典流体力学、机器学习、深度学习、实验流体力学、计算流体动力学、时空超分辨率、深度强化学习等核心知识,全方位提升您的流体力学计算与应用能力。
3
Fluent 专题
1.全方位技能提升:涵盖先进的计算方法(如伪谱法、CNN、GAN、Neural ODE、PINN等)、软件工具应用(Fluent软件、Python编程)、深度学习流场超分辨率、神经网络在湍流模拟中的应用(物理信息神经网络(PINN)和基于图神经网络(GNN))、神经网络在空气动力学中的应用、流动生成与可视化技术,全方位提升您的流体力学计算与应用能力。
2.专业优质资源:提供了多个经典案例实践机会,提供Python编程实现和案例数据代码的资源,确保学习效果与实践体验。
3.新兴技术探讨:课程还包括了流体力学与深度学习融合的新兴技术,如基于扩散模型的流动生成、动模态分解及流场预测等核心知识的探讨,为学员提供了前沿技术的视野。
04
报名须知
时间地点
基于机器学习深度学习驱动的流体力学流场重建技术与应用
2024年11月16日-11月17日
2024年11月23日-11月24日
在线直播(授课四天)
基于OpenFOAM和深度学习驱动的流体力学计算与应用
2024年10月26日-10月27日
2024年11月01日-11月03日
在线直播(授课五天)
基于Fluent和深度学习算法驱动的流体力学计算与应用
2024年10月26日-10月27日
2024年11月01日-11月03日
在线直播(授课五天)
深度学习在岩土工程中的应用与实践
2024 年 11月 02日-11月03日
2024 年 11月 09日-11月10日
在线直播(授课四天)
PFC离散元数值模拟仿真技术与应用
2024 年 10月 26日-10月27日
2024 年 11月 02日-11月03日
在线直播(授课四天)
报名费用
(含报名费、培训费、资料费)
课程名称 | 价格(元) | |
专题一:基于机器学习深度学习驱动的流体力学流场重建技术与应用 | 3900 | |
专题二:基于OpenFOAM 和深度学习驱动的流体力学计算与应用 | 4900 | |
专题三:基于Fluent 和深度学习算法驱动的流体力学计算与应用 | 4900 |
深度学习在岩土工程中的应用与实践:
¥4500元/人
PFC离散元数值模拟仿真技术与应用:
¥4300元/人
优惠一:
专题一2024年10月1日前报名缴费可享受300元早鸟价优惠;
参加过我单位举办的其它课程的老学员可享受额外500元优惠;
优惠二:
专题二、三2024年10月1日前报名缴费可享受300元早鸟价优惠;
参加过我单位举办的其它课程的老学员可享受额外300元优惠
岩土专题
2024年10月11日前报名缴费可享受200元早鸟价优惠;
参加过我单位举办的其它课程的老学员,可享受额外优惠200元;
【注】费用提供用于报销的正规机打发票及盖有公章的纸质通知文件;北京中科万维智能科技有限公司作为本次会议会务合作单位,负责注册费用收取和开具发票。如需开具会议费的单位请联系招生老师索取会议邀请函;
增值服务
1、凡报名学员将获得本次培训电子课件及案例模型文件;
2、培训结束可获得本次所学专题课程全部无限次回放视频;
3、参加培训并通过试的学员,可以获得:主办方北京软研国际信息技术研究院培训中心颁发的《智能复合材料结构设计与应用》《ABAQUS复合材料建模应用工程师》《深度学习流体力学计算与应用工程师》《深度学习在岩土工程中的应用与实践》《离散元仿真核心技术与应用》专业技能结业证书;
联系方式