功率 MOSFET 正向导通时可用一电阻等效,该电阻与温度有关,温度升高,该电阻变大;它还与门极驱动电压的大小有关,驱动电压升高,该电阻变小。详细的关系曲线可从制造商的手册中获得。即内部二极管的等效电路,可用一电压降等效,此二极管为MOSFET 的体二极管,多数情况下,因其特性很差,要避免使用。功率 MOSFET 在门级控制下的反向导通,也可用一电阻等效,该电阻与温度有关,温度升高,该电阻变大;它还与门极驱动电压的大小有关,驱动电压升高,该电阻变小。详细的关系曲线可从制造商的手册中获得。此工作状态称为MOSFET 的同步整流工作,是低压大电流输出开关电源中非常重要的一种工作状态。功率 MOSFET 正向截止时可用一电容等效,其容量与所加的正向电压、环境温度等有关,大小可从制造商的手册中获得。当门极不加控制时,其反向导通的稳态工作点同二极管。-- 门极与源极间的电压Vgs 控制器件的导通状态;当VgsVth时,器件处于导通状态;器件的通态电阻与Vgs有关,Vgs大,通态电阻小;多数器件的Vgs为 12V-15V ,额定值为+-30V;-- 器件的漏极电流额定是用它的有效值或平均值来标称的;只要实际的漏极电流有效值没有超过其额定值,保证散热没问题,则器件就是安全的;-- 器件的通态电阻呈正温度系数,故原理上很容易并联扩容,但实际并联时,还要考虑驱动的对称性和动态均流问题;-- 目前的 Logic-Level的功率 MOSFET,其Vgs只要 5V,便可保证漏源通态电阻很小;-- 器件的同步整流工作状态已变得愈来愈广泛,原因是它的通态电阻非常小(目前最小的为2-4 毫欧),在低压大电流输出的DC/DC 中已是最关键的器件;实际的功率MOSFET 可用三个结电容,三个沟道电阻,和一个内部二极管及一个理想MOSFET 来等效。三个结电容均与结电压的大小有关,而门极的沟道电阻一般很小,漏极和源极的两个沟道电阻之和即为MOSFET 饱和时的通态电阻。-- 在 t0 前,MOSFET 工作于截止状态,t0 时,MOSFET 被驱动开通;-- [t0-t1]区间,MOSFET 的GS 电压经Vgg 对Cgs充电而上升,在t1时刻,到达维持电压Vth,MOSFET 开始导电;-- [t1-t2]区间,MOSFET 的DS 电流增加,Millier 电容在该区间内因DS 电容的放电而放电,对GS 电容的充电影响不大;-- [t2-t3]区间,至t2 时刻,MOSFET 的DS 电压降至与Vgs 相同的电压,Millier 电容大大增加,外部驱动电压对Millier 电容进行充电,GS 电容的电压不变,Millier 电容上电压增加,而DS电容上的电压继续减小;-- [t3-t4]区间,至t3 时刻,MOSFET 的DS 电压降至饱和导通时的电压,Millier 电容变小并和GS 电容一起由外部驱动电压充电,GS 电容的电压上升,至t4 时刻为止。此时GS 电容电压已达稳态,DS 电压也达最小,即稳定的通态压降。-- 在 t5 前,MOSFET 工作于导通状态, t5 时,MOSFET 被驱动关断;-- [t5-t6]区间,MOSFET 的Cgs 电压经驱动电路电阻放电而下降,在t6 时刻,MOSFET 的通态电阻微微上升,DS 电压梢稍增加,但DS 电流不变;-- [t6-t7]区间,在t6 时刻,MOSFET 的Millier 电容又变得很大,故GS 电容的电压不变,放电电流流过Millier 电容,使DS 电压继续增加;-- [t7-t8]区间,至t7 时刻,MOSFET 的DS 电压升至与Vgs 相同的电压,Millier 电容迅速减小,GS 电容开始继续放电,此时DS 电容上的电压迅速上升,DS 电流则迅速下降;-- [t8-t9]区间,至t8 时刻,GS 电容已放电至Vth,MOSFET 完全关断;该区间内GS 电容继续放电直至零。(2):因二极管反向恢复引起的MOSFET 开关波形:为MOSFET 器件与二极管回路中的所有分布电感只和。一般也可将这个损耗看成器件的感性关断损耗。(A):根据电源规格,合理选择MOSFET 器件(见下表):(B):选择时,如工作电流较大,则在相同的器件额定参数下,-- 应尽可能选择正向导通电阻小的 MOSFET;(A):根据电源规格,计算所选变换器中MOSFET 的稳态参数:(B):从器件商的DATASHEET 中选择合适的MOSFET,可多选一些以便实验时比较;(C):从所选的MOSFET 的其它参数,如正向通态电阻,结电容等等,估算其工作时的最大损耗,与其它元器件的损耗一起,估算变换器的效率;-- 开通有一个过程,其长短与控制信号及器件内部结构有关;-- 关断有一个过程,其长短与控制信号及器件内部结构有关;目前作为开关的电子器件非常多。在开关电源中,用得最多的是二极管、MOSFET、IGBT 等,以及它们的组合。-- (Diamond)功率器件;--- 再下一代-- 可控制开通,但不能控制关断:如普通可控硅器件;-- 电压型控制器件:如MOSFET,IGBT,IGT/COMFET ,SIT 等;-- 中频功率器件:如GTR,IGBT,IGT/COMFET;-- 高频功率器件:如MOSFET,快恢复二极管,萧特基二极管,SIT 等-- 多子器件:如MOSFET,萧特基,SIT,JFET 等-- 少子器件:如IGBT,GTR,GTO,快恢复,等本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。
【教程】电磁兼容
【教程】单片机原理与应用
【教程】C语言基础
【教程】实时操作系统uCOS-II
【教程】ARM基础
【资料】20个智能家居类系统设计资料
【资料】400+电子电路动图课件+147G硬件设计与开发视频资料
【资料】100+开关电源设计资料
【资料】800+单片机类设计资料,玩转单片机电路设计~
【资料】10G+AD封装库文件,满足你99%的开发需求!
【资料】60+套逆变器电源资料,助力新能源应用开发
【资料】31个反激式参数自动计算公式表格
【资料】176个功率MOSFET电路学习资料
【资料】97份开关电源环路控制设计资料
【资料】525个单片机C语言仿真例程
【资料】5套直流无刷三相电机控制方案
【资料】1399个Cadence pcb操作手册封装库文件
阅读原文获取更多学习资料