AI模型“减肥”风潮:量化究竟带来了什么?

科技   2024-08-21 17:34   北京  

量化对大模型的影响是什么

©作者|YXFFF

来源|神州问学


引言


大模型在NLP和CV领域的广泛应用中展现了强大的能力,但随着模型规模的扩大,对计算和存储资源的需求也急剧增加,特别是在资源受限的设备上面临挑战。量化技术通过将模型参数和激活值从浮点数转换为低精度表示,不仅减小了模型的存储占用,还能加速推理过程,从而成为应对大模型资源挑战的关键手段。随着量化技术的不断优化,大模型将在更多领域展现更高效和可扩展的能力。


一、量化的基本概念与方法


1、 量化的定义与实现


量化定义了一种数学过程,其中变量的值被映射到一个固定数量的比特位上。在模型中实现量化,通常涉及将变量(例如权重和激活函数)转换为特定位数的数据表示。这意味着当我们计算模型中的某个元素时,我们得到的是这个元素对应的比特值的乘积。


常见的量化方法包括后训练量化(PTQ)、量化感知训练(QAT)和动态量化(Dynamic Quantization)、混合精度量化(Mixed-Precision Quantization)等。


PTQ:在模型训练完成后进行量化,不需要重新训练模型。适用于已经训练好的模型,尤其是当训练数据不可用或训练时间受限时。简单易行,不需要额外的训练过程。在某些情况下,量化后模型的性能(尤其是精度)可能显著下降。


QAT:在模型训练过程中模拟量化操作,使模型逐渐适应低精度表示。通常在训练阶段就引入量化操作,模型在量化环境下学习参数。相比PTQ,能够更好地保持模型的精度。需要重新训练模型,训练时间较长,且需要有足够的训练数据。


动态量化:在推理阶段对激活值进行动态量化,通常应用于权重和激活值。相比静态量化,动态量化在推理时更具灵活性。不需要训练,推理时更具灵活性。相比QAT,性能提升有限。


混合精度量化:不同的部分使用不同的量化精度,如部分使用FP32,部分使用INT8。通常在性能和精度之间进行折中。灵活性高,可以在性能和精度之间找到最佳平衡点。实现复杂度较高,可能需要手动调优。


2、 量化的多重效益


模型尺寸:量化可以显著减少模型尺寸,尤其是对于那些因规模庞大而难以部署的模型来说,这一点尤为重要。通过减少数据的表示位数,我们能够在不损失精度或增加计算时间的情况下减小模型大小。


推理速度:量化提高了模型在推理过程中的效率。由于量化减少了数据存储需求,模型可以在较低的计算资源上运行,从而加快推理速度。此外,适当的量化还可以帮助模型在低精度硬件上运行,进一步提升速度。


功耗:量化通过减少模型处理数据的数量来降低功耗。尽管量化可能会增加一些计算负担,但总体而言,它有助于减少模型整体的能耗。特别是在移动设备和嵌入式系统中,量化是一个提高能效比的有效手段。


二、 量化对模型性能的影响


1、 推理速度的提升


量化显著提升了模型的推理速度和资源利用率。通过将模型的计算过程转换到更低精度的数字表示,减少了内存访问和计算时间,从而加快了模型的执行速度。在边缘设备、移动设备等资源受限环境中,量化可以有效减少模型的内存消耗和计算需求,从而提高部署效率。


2、 资源利用率优化


在资源受限的环境下,量化提供了一种有效的解决方案。在移动设备上,由于资源有限,传统的模型可能无法达到理想的性能。通过量化技术,如INT8量化和FP4量化,可以有效降低内存需求,同时保持模型的推理性能,使得模型在这些设备上能够以较高的效率运行。


3、 实测案例



香港大学在《How Good Are Low-bit Quantized LLAMA3 Models?An Empirical Study》一文中对Llama3采用多种PTQ和QAT方法,实验结果表明,各种训练后量化PTQ方法在不同比特宽度上的表现存在显著差异,推理速度的提升会伴随模型性能的显著下降。在2比特时模型性能大幅度下降,但在3比特及以上能够维持较为稳定的性能。AWQ通过抑制异常通道提高了量化的稳定性,尤其是在3比特时表现良好。BiLLM在极限压缩条件下表现出色,使LLAMA3-8B在低至1.1比特的配置下优于其他PTQ方法,特别是在2比特及以下配置中表现出色。对LoRA-FT方法,其主要用于在低比特宽度下进行性能补偿。QLoRA和IR-QLoRA在4比特的LLAMA3-8B模型上的表现虽然有所下降,但与未经LoRA-FT的模型相比,其精度仍然较高,尤其是在MMLU数据集上。然而,这些方法仍无法完全弥补量化所带来的性能损失。


三、量化对模型准确性的影响


1、 精度的潜在下降


量化过程中,模型参数被转换为低精度的整数形式,这通常会导致模型精度的下降。使用8位或更低精度的量化时,模型的预测性能会受到影响,尤其是在处理高维度输入数据时。此外,量化误差还可能导致特定类型的错误,如预测的正确答案被错误地标记为错误答案。


2、 量化方法对比


不同的量化方法可能会以不同的影响方式改变模型的准确性。一些研究表明,训练时量化能够获得接近浮点模型的精度,尤其适合4bit量化。另一方面,训练后量化(PTQ)方法虽然可以提供更高的准确性,但计算开销相对较高。还有研究发现,动态量化比静态量化能更好地保持精度,尽管代价是模型的推理速度有所下降。


3、 性能与精度的权衡


为了在保证模型性能的同时尽量减少量化的精度损失,研究人员和工程师正在探索多种策略。一种策略是优化映射函数的设计,使其在减少精度损失的同时保持模型性能。通过调整映射阈值或优化量化操作,可以在一定程度上缓解精度损失的问题。另一种方法是选择性地量化模型的各个层,而不是整个模型。这样做可以帮助研究者根据模型的具体应用场景选择最合适的量化策略。


四、量化对实际应用场景的影响


1、 工业与智能设备应用


在工业自动化领域,模型量化被用来提高处理速度,减少模型在硬件上的存储和计算成本。例如,通过将模型从浮点数转换为整数,可以有效提升计算性能,同时保持模型的精度不变。在汽车制造行业,通过模型量化,可以将驾驶模拟系统的性能提升了50%以上。此外,量化模型在解决复杂的工业控制问题时,如过程监控和故障诊断中,也显示出其独特的优势。以工业视觉检测为例,量化后的模型使得图像处理速度提高了3倍,同时精度保持不变,显著提高了生产效率。


2、 部署与维护挑战


模型部署和更新过程中,量化面临的挑战主要包括如何平衡模型的性能、速度和安全性。由于不同模型可能对量化的敏感性不同,优化量化参数以保持最佳性能需要仔细考量。此外,针对特定硬件平台的量化实现也面临技术挑战,以确保模型能够在各种设备上高效部署和运行。例如,在自动驾驶领域,一个实际的挑战是在边缘计算平台上实现高性能的实时决策支持系统,这要求模型在不同硬件设备上都能保持较高的性能和稳定性。


五、量化技术的进展与趋势


1、 向极限推进


清华大学和哈尔滨工业大学的研究人员联合提出了一种名为OneBit的1位量化感知训练框架,将大模型量化做到1比特,同时保持至少83%的原始模型性能。OneBit框架采用了创新的1比特参数表示方法,结合高效的矩阵分解初始化策略Sign-Value-Independent Decomposition(SVID),显著提升框架收敛速度。通过量化感知知识蒸馏,成功将教师模型的能力迁移至1比特对应模型。



2、 与其他优化技术的结合


量化技术与其他优化技术的结合是一个重要的研究方向。与剪枝技术的结合可以有效降低大模型的计算复杂度,同时通过知识蒸馏将知识转移到更简单的模型中。这种结合不仅能够提高模型性能,还能扩大模型的应用范围。量化优化技术还可以与其他优化方法结合使用,如梯度下降法等,进一步提高模型的性能。


3、 量化技术的未来定位


小型移动平台(如智能手机、机器人、无人驾驶汽车等)的硬件限制和有限计算资源,阻碍了神经网络模型的直接部署。为这些平台设计独特的压缩方法,尤其是量化技术,是未来的重要研究方向。量化技术通过降低模型的计算需求和存储空间,使得在资源受限的环境中,复杂的神经网络也能高效运行。未来,量化技术将进一步优化,适应不同硬件需求,成为推动小型设备智能化应用的关键技术。


结论


量化技术在大模型的发展中十分重要。随着计算资源的日益紧张和模型性能的持续追求,量化技术的发展前景广阔。从智能量化算法的开发到自适应量化策略的引入,再到与其他优化技术的结合,未来的量化技术将更加智能化和高效,为AI技术的发展提供强有力的技术支持。






智见AGI
围绕生成式AI技术的交流社区,与开发者和合作伙伴共同探究有深度的生成式AI技术前沿洞见、技术迭代、案例解析、方法和实践,助力企业的数字化转型
 最新文章